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INTRODUCTION

Coulomb excitation, understood as the nuclear excitation caused solely by
the electromagnetic field acting between the colliding nuclei, is a
powerful probe of collective nuclear structure. The main advantage of
Coulomb excitation lies in the fact that, unlike the nuclear reactions, the
snteraction can be described by the known, well-established theory of
electromagnetic processes, thus the internal structure can be studied in a
nodel-independent way. Well below the Coulomb bareer short-ranged nuclear
forces are negligible, while the long-ranged electromagnetic interaction
still gives rise to a considerable excitation of the nuclear structure,
notably to the excitation of nuclear levels resulting from the collective
degrees of freedom. The recognition of Coulomb excitation as a method of
studying collective (preeminently, but not only, quadrupole ) motion in
nuclei“dates back to the early 1950’s. The review paper by Cline [CLIS8G]
contains a short summary of the early Coulomb excitation work, complete
with the extensive list of references. Since then, Coulomb excitation with
light-ion beams has been extensively exploited to measure the reduced
excitation probabilities and quadrupole moments of the lowest excited
states. The experiments performed using the light-ion beamsycan be easily
interpreted because of the applicablity of first- and second order
perturbation theory due to the fact that only one and two step excitation
processes need to be taken into account (see e.g. the extensive discussion
of the perturbation approach in [ALD75] ). The situation changes
dramatically when the heavy-ion beams, available from the newest generation
of accelerators, are employed. Multiple Coulomb excitation, observed with
such beams, populates many excited states (up to spin ® 30h in strongly
deformed nuclei). producing an enormous amount of information concerning the
electromagnetic structure of the nuclei. An adequate semiclassical theory
of multiple Coulomb excitation has been developed in 1958 [ALD56], followed
by the first multiple Coulomb excitation computer program COULEX (Winther,
deBoer in [ALD66]). COULEX has provided the first opportunity to treat the
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multiple Coulomb excitation quantatively, converting the assumed set of the
reduced matrix elements of electromagnetic operators to the excitation
amplitudes; thus making possible to test the model predictions. However,
the ultimate goal of model-independent extraction of the electromagnetic
structure parameters (reduced matrix elements) from the heavy-ion
experiments could not be achieved until recently. The main difficulty lies
in a number of reduced matrix elements influencing the heavy-ion
excitation, more than a hundred when the heaviest beams are used on
sufficiently deformed targets. In such a case one must first overdetermine
the problem by collecting enough experimental data, what requires efficient
data achisition apparatus, then be able to reproduce the large set of data
by fitting the matrix elements. An attempt to fully exploit the potential
advantages of multiple Coulomb excitation has resulted in considerable
development of both experimental methods and analysis software. The
efficiency of data collection has been very much enhanced by the
development of position sensitive, parallel plate avalanche counters
(PPAC’s). PPAC type counters make possible to reconstruct the kinematics of
each scattering event at rates up to 10 MHz, thus, since Coulomb excitation
is for a given beam/target combination a function of scattering angle,
allow to conduct several "logical® experiments during a single accelerator
run. Moreover, event-by-event kinematic reconstruction is used to correct
for considerable Dopﬁler shifts of observed 7 energies, dramatically
improving the quality of the q-ray spectra. Ref. [VARSB] gives an example
and some technical details of a PPAC system designed for the Coulomb
excitation work. Further clarification of the complicated q-ray spectra has
been achieved by employing Compton-suppressed 7-ray germanium detectors.
Initially multiple Coulomb excitation data have been analysed by
comparing these data with the results obtained with COULEX coupled to a 17-
deexcitation program. The sets of matrix elements required as input data to
COULEX were taken from model predictions and the conclusions were drawn
based on better or worse agreement obtained. However, the results of such a
model-dependent analyses were not conclusive, primarily due to the unknown
sensitivity of the experimental data to assumed matrix elements and in some

cases have proven to be incorrect. A model-independent analysis of multiple
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Coulomb excitation data, using the formalism employed by COULEX, is not
practical taken into consideration the numerical effort necessary for such
a task, by far exceeding even the capability of the newest generation
comﬁuters. To overcome this problem it is necessary to construct simple
approximation to the Coulomb excitation formalism, accurate enough to
determine a search strategy in a multidimensional space of the matrix
elements parametrizing both excitation and decay processes. The development
of such an approximation become the basis of the Rochester Coulomb
excitation data analysis program, GOSIA, presented in this report.

GOSIA was originally developed at Nuclear Structure Research
Laboratory of The University of Rochester in 1980 [CZ083] and has been,
- over next years, expanded and improved on a basis of the experience gained
by the Rochester-Uppsala-Warsaw-Liverpool Coulomb excitation collaboration.
A few revisions of the code have been done at NSRL to improve 1ts
efficiency and reliability and to accomodate the new technical
develdpments. The latest version of GOSIA and the associated quédrupole sum
rules‘program SIGMA are dated April 1991.

GOSIA is an experiment-oriented program. Although providing the
possibility of rumning theoretical calculations (i.e. evaluation of
excitation amplitudes and 7-decay yields for a given set of the matri
elements) it is primarily designed to perform a fit of the matrix elements
to reproduce the large amount of experimental data. These data not only
include the y-yields observed in a number of independent experiments, but
also available spectroscopic information, such as branching ratios, E2/M1
mixing ratios, nuclear level lifetimes and previously measured B2 matrix
elements. All this information combined allow to uniquely determine the
full set of matrix elements for an investigated nucleus together with the
realistic estimate of the errors of the fitted matrix elements. Finally,
using the associated quadrupole sum rules code, SIGMA, it is possible, on a
basis of the results obtained with GOSIA, to evaluate, in 2 model-
independent way, the expectaction values and the statistical distribution
of the E2 moments, providing a clear insight into the collective properties
of the nuclear states.

For 2 comprehensive summary of the Coulomb excitation analysis
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methods it is necessary to provide some information about the algorithms
used for *his purpose. The effectiveness of data analysis is still very
much dzpendent on the ability to choose the best ways of using the computer
codes, such as GOSIA. Therefore we have decided to extend this report
beyond the typical program write-up to make possible the most efficient
utilization of the code. A short overview of the semiclassical Coulomb
excitation formalism and the theory of subsequent decay of the excited
nucleus is presented in Chapter I. The fast Coulomb excitation
approximation, which is a basis of GOSIA, is described in Chapter II.
Chapter III is a presentation of the numerical methods used, while Chapter
IV contains the input instructions. The qﬁadrupole sum rules and the
description of the associated code SIGMA are contained in Chapter V. The
details of the operations on the permanent files, created and used by GOSIA
and SIGMA, are given in Chapter VI.



I. COULOMB EXCITATION AND GAMMA DECAY OF EXCITED NUCLEUS

The semiclassical theory of Coulomb excitation is exhaustively discussed in
the Alder/Winther monograph of the subject [ALD75]. This fundamental work
presents some- alternative approaches to the formal description of
electromagnetic excitation. Most of them, being valuable for better
understanding the nature of the processes in question, are nevertheless not
viable practically. Therefore, the following outline of Coulomb excitation
theory is limited to the formalism being actually used in the code.
Particularly, the differences between semiclassical and fully quantal
descriptions will not be discussed. Concentrating on multiple excitation we
will also pay less attention to widely used and known perturbation
theories. Also, the presentation of deexcitation theory will strictly

follow the formalism used in GOSTA.

I.1. SEMICLASSICAL THEORY OF COULOMB EXCITATION AND ITS APPLICABILITY

Pure Coulomb excitation, understood as exclusively electromagnetic
interaction, occurs when the ranges of nuclear forces of both interacting
nuclei are completely separated in space. Usually the condition is

expressed as:

2

_ leze
T K«

> 1 ' ' 1.1
I .

S

where a denotes the classical distance of closest approach, X is the
reduced wavelength of incoming projectile with initial velocity Vi Z e and
Z e are charges of projectile and target. A convenient formula for maximum

' safe bombarding energy in head-on collisions was given by Cline (CLI69]



A, + A Z, Z
E (V) = 1.44 -1 A 1 21/3 73 1.2
max 2 1.25(A /%A /)45

where index "1" denotes projectile, "2" is used for target (this convention
will be used consequently). Criterion 1.2 corresponds to a separation of
nuclear surfaces of about 5 fm.

Considerable simplification is achieved assuhing classical treatment of
two-body kinematics. A classical description of kinematics is justified if
the size of the incoming projectile wavepacket is‘sﬁall compared to the
dimensions of its trajectory, which is once more assured by the validity of
1.1. It is easily checked using 1.1 and 1.2, that heavy-ion induced Coulomb
excitation yields values of 7 ranging from 102 to 103, Therefore, the
validity of a classical description of the scattering kinematics is closely
connected to the assumption of non-intervention of the nuclear forces; thus
the semiclassical approach is applicable par excellence for all processes
of pure electromagnetic nature.

The semiclassical approach is not able to take into account the
modification of the trajectory due to the energy transfer. To thg first
order, an effect of energy transfer can be described by symmetrization of
relevant excitation parameters, i.e. taking an average of these parameters
corresponding to perturbed and unperturbed orbits (see below). More
accurate determination of energy transfer effects is not possible, since in
the classical kinematics picture it is not known at which point of the
trajectory this transfer actually took place. Fortunately, in most cases
the excitation energy in pure electromagnetic processes does not exceed a
small fraction of total bombarding energy, so the first-order correction,
introduced by a symmetrization procedure, is quite adequate. Further
assumptions made concern the time separation of excitation and decay
processes. The effective collision time is of order 107%% : 1072° sec,
‘being thus orders of magnitude shorter than mean lifetimes of nuclear
states. This allows the excitation and 7 decay to be treated sequentially.
‘Finally, using the expansion of the electromagnetic interaction potential

in a multipole series (BOHEY] onme can represent this potential as a sum of
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three factors: monopole-monopole interaction, deiining the kinematics only;
nutual monopole-multipole interaction and mutual nultipole-multipole
interaction. The third term is weak compared to the monopole-multipole term
and within desired accuracy can be neglected. This treatment yields a
convenient separation of the Schrodinger equatiom, i.e., the excitation of

both projectile and target can be independently expressed as:

8 o i
ibGe 19 9> = (Hy g+ Vp,2(r (£))) [¥y 9 1.3

where V1 a (f(t)) stands for monopole-multipole interaction between
projectile (multipole) and target (monopole) - indexed by 1 - or vice
versa, indexed by 2. The monmopole-monopole interaction determines the time-

dependence of the potential by the classical trajectory T(t). As can be

seen, target and projectile nuclei can be interchanged, therefore we will

use indices 1 and 2 only where the distinction is necessary. To solve'the

time-dependent Schrodinger equation 1.3 we represent |¢(T,t)> as a linear

“combinaton of free-nucleus wave functions ¢(F), taken with time-dependent

coefficients of the form:

|$(z,t)> = i a (t) ¢ (¥> exp (-iE t/h) 1.4

Q
with i l¢n> = En[¢n>

Substituting 1.4 to 1.3 one gets:

da_(t)

ihﬁ T |¢u(5)>exPK‘i?nt/h) = iag(t)v(t)|¢n(§)>exp(—iEnt/h) L

Taking into account orthonormality of the free nucleus wavefunctions !¢n>

((@k[¢n> ="5kn) we finally obtain:

da (©) =-Lpa (t) <O V()]0 > e it (B, -E ) 1.6
dt h  "n k 1%p7 SXP R VMM '




The system of differential equations 1.6 defines the complex expansion
coefficients ak(t). Before collision, the nucleus is assumed to be in the
ground state, thus the initial condition (corresponding to t = -®) can be
expressed as a = 5ko’ where index O stands for ground state. The nucleus
after collls1on is then described by the set of excitation amplitudes

a (t = ®), deflnlng excitation probabilities. (Pk = akak’ as follows from
1. 4) As mentioned above, the interaction potentzal V(t) can be expanded

into a multipole series:

i

@ A 47 7

2,1°
1,9 = I L e (DF 8y (0) My, O,p) 1.7
i=1 p=-A ,
here 5, (1) = u(8),0(4)) s
wnere = «0&.
_ A [r(t)]kd'
for electric and
L R GExD | |
S, (t) = Y, (6(t),8(t 1.8b.
a8 = 3 e e VICORIO)

for magnetic excitation (Yk denotes standard normalized spherical
harmonics). The sywmbol MO\, 8) stands for electric and magnetic multipole

‘moments, as defined e.g. in [BOH69]

M(EN,p) = [p(F) Yx#(e,@)d3 : 1.92
1 Nz o = oae 3
MM\, 4) = :;(‘X:'l—)' J 03 () (rx V)Y)\F(G,@) d°r 1.9b

p(r) and () being spatial charge and current distributions of a free
nucleus, respectively. Inserting 1.7 to 1.8 one obtains the
parametrlzatlon of electromagnetic excitation by the matrix elements of

multlpole moment operators:



s

dak(t) Ay ge "
= i — i a (t) exp 1 (B -E) Iy (-1)# 1.10

WO DTN

To express the time-dependent functions Sku(t) it is Eouvenient to
introduce a frame of coordinates with the z-axis along the symmetry axis of
the incoming particle trajectory and y-axis in the trajectory plane defined
in such a way that the incoming particle velocity component v, is positive.
The x-axis then is defined to form a right-handed cartesian system of

coordinates (Fig. I.1).

Fig. I.1 Coordinate system used to evaluate the

Coulomb excitation amplitudes.



In this system of coordinates, one can describe relative two-body motion,
treated as a classical Kepler problem, introducing two parameters € and w.
The parameter €, called the orbit eccentricity, is expressed by the center-

of-mass scattering angle ch:

€ = ——5 1.11
cm

sim—>-
The parameter w, which replaces time;is given by:

t = 3— (esinhw + w) 1.12
where a is the distance of closest approach in a head-on collision. This
parametrization yields the following expression for the length of the
radius-vector r:

r = a(écoshw + 1) 1.13

Explicitly, cartesian coordinates are expressed by € and w as:

x=0
y = a(e?-1)1/2 sinhw 1.14
z = a(coshw + €)

It is easily seen that the closest approach corresponds to w=0. The

functions Sg}) are replaced by dimensionless "collision functions® G(e,w):

NEADU T r(u)sfﬂ(t(w)) 1.15a

! 1/2
-0t GR) /

QE (59w) = a
Y

for electric excitations, and
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W (e) = 2 & B I VW), (6w) 1.15b

Y

for magnetic-excitations. In addition, it is convenient to replace the

multipole operator matrix elements <ISM;|M(X,F)(I£M£> by reduced matrix
elementsv<1g||M(X)|{I£> using the Wigner-Eckart theorem:

I-M, I AI,
T M_[MOp) [ TMe> = (-1) (_MS ; Mf) <I M) [T 1.18

It is also presumed that the phase convention for the wavefunctions |[I> is
such, that the reduced matrix elements are real. We also synmetrize the
parameters a and Yo averaging between elastic scattering values and the
values resulting from decreasing the bombarding energy by the excitation
energy. Insertion of 1.11 through 1.16 into 1.10, taking into account
symmetrization, yields the final system of differential equations for the
excitation amplitudes a, (the following formulas are given already with
numerical representation of physical constants, corresponding to energies in
MeV, reduced electric multipole matrix elements in ebl’/? and reduced

magnetic multipole matrix elements in pn.b(l”l)/z, B being the nuclear

magneton) :
d
B D 0, e O [ e (ertabon) a,(0) 17e

The one-dimensional indexing of excitaticn amplitudes 3, involves all
magnetic substates of states |I>, which from a point of view of a theory of
electromagnetic excitation are treated as independent states. The parameters
Ekn’ so called gdiabaticity parameters, reflecting time fluctuations of

nuclear wavefunctions are given by:
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Z122 VAI

-1/2. -1/2
fkn = —6732557— {(Ep-sEk) 1/2 "(EP‘SEQ) / } 1.17b

s = (1+ Al/Az)

Ep being the bombarding energy. The above is valid for target excitation,
while .for projectile excitation indices 1 and 2 are to be interchanged. The

same convention is valid for coupling parameters g‘iﬁ” given by:

I A1

A _
g(kﬁ) = @12y I, (i ﬁk) fe 1.17¢
n
an 21vA (2\-1) /4 |
mith g = cf(0 L1 {(E,-sEK) (B,~sEn) } 1.17d
(s2,Z,) '
172

where the numerical coefficients Ci(u> are different for electric and

magnetic excitation and are given explicitly as:

) | Ao QA=D1
cf = 1.116547. (13.880122) s 73Ry
- 1.17e

O\ = (v/c) cE/05.0081042

The explicit expressions for the collision functions §(e,w) for El to E6 and
M1,¥2 are compiled in Table I.1. As pointed out in Ref. [ALD75], Appendix J,
one can account for the dipole polarization effect by modifying the

collision functions corresponding to B2 type of excitation:

Ugy(€10)* Gy (,0) » (1-2 7)) 1.18a

where:

EpAQ

zg (1 + A /A

z=d e 1.18b
o,
d being an adjustable empirical El polarization strength. A widely accepted

value of d is .005 if the bombarding energy Epis in MeV. From 1.13 follows:
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a _ 1
r € coshw + 1 ' 1.18¢

The useful symmetry properties of the Q’s are the following:

*
By (€0) = 8§y, (&0) 4 1.19
and, for electric excitation:

QX# (5:U) = qknﬂ(eru)

1.20
-w) = (-1F
QA# (,~w) = (-1) Qk# (e,uw)
while for magnetic excitation:
Qkﬂ (e,w) = ‘Qk_# (e,w)
1.21

§, (€m0 = D a, (ew)

It should be noted, that for backscattering (Gcm= 180° ; e=1) all electric
Q’s with p#0 vanish, as well as all magnetic ’'s; therefore the magnetic
quantum number is conserved. This is physically understandable, since the
process along the z-axis cannot change the magnetic quantum number. The
conservation of magnetic quantum number, exactly true for backscattering, is
approximaﬁely valid for an arbitrary scattering angle due to the dominance
of electric collision functions with p=0. The backscattering is extremely
important experimentally, providing the closest possible approach of the
nuclei taking part in the excitation process and therefore providing the
maximum information available from Coulomb excitation.

The coefficients ¢, which define coupling of the nuclear states,
are dependent on Z,A and energy of the projectile. It is interesting to see
the effect of using various beams on a given target, assuming the maximum
safe bombarding energy of the projectile given by 1.2. Neglecting
symmetrization, one gets from 1.2 and 1.17c:
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Z,Ad 1/2 A

< (=) Car ) 1.22

d=1.25 417% « A1 5

It can easily be seen, taking into account correlation of Al and Zl, that
the coupling coefficients ¢ are almost directly proportional to the charge
number of a projectile. Consequently, coming from lighter to heavier beans,
one observes excitation of a growing number of levels, the number of matrix
elements influencing the process increasing ever faster.

The parameter ¢, usually called the adiabaticity parameter, results
from time oscillations of the nuclear eigenfunctions. The appreciable mutual
excitation of nuclear levels is possible only when the relative oscillation
of their eigenfunctions is slow on the scale of the effective collision
time. This implies that the Coulomb excitation cross sections generally
increase with decreasing £. Taking into account that the excitation energy
is small compared to the bombarding energy, we can expand 1.17b in a series.
This yields:

En - Ek
E_ VE
P P

~

Ekn 1.23
It is easily seen that small level energy differences are preferable for
Coulomb excitation. (Note the completely opposite behavior of deexcitation
process). 1.23 also shows that increasing energy of the projectile enhances
the Coulomb excitation not only because of increased coupling parameters ¢
but also because of decreased values of €. '

A convenient way to visualize the excitation process is to

introduce so~called orbital integrals R(e,¢), defined as:

[ +]

Ryy(6:6) = [ 9, (e,0) exp (if(esinhusa)) du 1.24

-0

The quantities R directly determine the excitation amplitudes, provided the
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applicability of the first-order perturbation approach. Generally, the

formal solution of 1.17a can be expressed by an infinite integral series as:

o w0 W
B =) = 3+ {f A (0)du)e, + ([ A (u))dvy LA u)du} ] +
1.25
® “a ¥ -
oo+ {J A (wn)dun f.m A (wn~l)dwn—1'ﬂff A (wo)dwo)} a gt ..

where a stands for the vector of the amplitudes and A(w) is the right-hand
side matrix operator of 1.17a. The initial vector Eo has the ground state
amplitude equal to 1, all other components vanish. Each term of 1.25
corresponds to given order excitation, i.e., connects a number of matrix
elements equal to the number of integrations. Assuming weak interaction, the
first-order perturbation theory expresses the excitation amplitudes of the

states k directly coupled to the ground state as the linear term of 1.25:

% =1 P o By (66,) <ILIIMO) 1T 1.26

index "0" denoting the ground state. Note that 1.268 (and more general 1.17)
Ais valid for a fixed polarization of a ground state, thus for non-zero
ground state spin one must average the excitation amplitudes over all

possible magnetic substates of the ground state. This explicitly means:

I S

kT (2I_+1)

Pk'z 3'ka’*k ' 1.28

where ak(mo) denotes the excitation probability of state k with ground state
polarization m_. The formula 1.26 has been extensively used to determine

reduced excitation probabilities:
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B\, I} I,) = -34-55— <T, | MO | 1,5  1.29

in all cases the one-step excitation assumption can apply. In addition to
their direct applicability to weak Coulomb excitation processes, the orbital -
integrals R give some gemeral idea about the relationships between different
modes of excitation. As an example, Fig. I.2 shows the quadrupole orbital
integrals Rao and R

as functions of ¢ for §__=180° (ch reaches maximum,

2¢1 m _
‘ Rz‘x vanishes) and 6m=]f20’° (optimum scattering angle for Am==1 excitation).

4.0

P ?20.(9(:»1: 4800)

on (ew E 420°>

Ql.‘.:i (@w: 42.0')

Fig. I.‘Z The orbital integrals Rzo and Raz s

The applicability of first and second order perturbation theories is limited

to the light-ion induced Coulomb excitation, or, for heavy-ion beams, to beam
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energies far below the safe bombarding emergy. In case of a typical multiple
Coulomb excitation experiment the system of differential equations. 1.17 must
be solved numerically. It is, for example, estimated that the excitation
probability of the first excited o* of 2%*8Cn bombarded with a 641 MeV 138e
beam is still semsitive to the excitation modes involving 30-th order
products of the reduced matrix elements. This proves that the perturbation-

type simplifications are generally not feasible. An efficient fast

approximation to the Coulomb excitation problem is presented in Chapter II.
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1.2 GAMMA DECAY FOLLOWING ELECTROMAGNETIC EXCITATION

The decay of a Coulomb-excited nucleus can be treated as completely separated
in time from the excitation process. The initial condition for the decay can
be described by a statistical tensor, expressing the state of polarization of

the decaying level:

_ 1/2p , 3I-w’, I kI =
P = QDL CDT gy e 2y 1.30
where we explicitly denote excitation amplitude of a substate | IM > with
two-dimensional indexing. Averaging 1.30 over all possible polarizations of

a ground state we get:

1/2 )
_ (2I+1) M T kI =
ka(I) = ZI°+1 w B (-1) (_M) Y M )a’IM’(Mo)aIM(Mo) 1.31
o
It is easily seen that:
Po@ = Py 1.32

The angular distribution of gamma radiation can be expressed as (this is

valid in an arbitrary coordinate frame with the origin at the decaying

 nucleus):

430 ,
an_an = %0 )“”‘“"‘27(1: Wi L) LasHm 0TI, 6y 1.3
even

X

Here ¢ (9 ) denotes the scattering angle dependent Rutherford cross-section,
F (kk I I ) are 7-7 correlation coefficients (as defined, e.g., in FRABS) ,

XEX( 6'¢.) are normalized spherical harmonics. The quantities 0, are the
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Il"*I8 transition amplitudes for multipolarity X\, related to the emission

probability 7(11) by:

11,) = Ag 16, (1,41) |2 1.34

An explicit form of Fk(kA’IZIl) can be expressed in terms of Wigner’s 3-j

and 6-j symbols

Il+I2—1 ‘ 1/2
Fk(XX’Ile) = (-1) [(2k+l)(211+1)(2k+1)(2k’+1)]

ANk A Mk
Gao 11} 1.35
1 1 ‘2
while 51 is given by:
5. _ () 1 8w(k+1))1/2(E ?* 12 (1 [IEQOALLL >
» <1 31 ( = 3 1/
¢ 2+1)11 b ¢ (21, +1)

1.36

a(\) = {§ for EA trans?t%ons

+1 for M\ transitions
The coordinate system.used for evaluation of excitation probabilities is no
longer convenient to determine angular distributions of gamma radiation, as
it is not fixed with respect to the laboratory frame. Therefore, it is
useful to define the z-axis along the beam direction with the x-axis in the
plane of orbit in such a way, that the x-component of the impact parameter

is pogitive. The y-axis is then defined to form a right-handed system (Fig.
1.3)
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Fig. I.3 The coordinate system used to describe

the 7-decay of a Coulomb-excited nucleus.

The statistical temsors p,__ in the new coordinate frame are obtained by

rotation with Euler angles (7/2,(w+0)/2,m):

k 1 7+8 ) 1.37

Py }):(’ g Py 2 20 T
the rotation functions Dix,(a,ﬁ,7) being defined according to [BOH69]:
k _ Jiya Lk iy'y
L N ] - d b 1.38
Dy (@:Bm) =& dyy (P |
with: /2
1
k = opkey) ey ! .
dp @ = BTy 1.39

X

) (k_kt§m) (k;x) (_l)k—x’»m [cosg]2m+x+x’[sin§]2k~2m—x—x’
m

=23



Inserting 1.38 and 1.39 to 1.37 one obtains:

Py (-1)% - g’ X d?,x(fgg) Py 1.40
A complete &escription of the 7-decay should also involve the depolarization
of the excited levels due to the hyperfine interactiom, i.e. the interaction
between the stripped electron shells and the aucleus. This effect can be
taken into account by ifitroducing the k-dependent attenuation coefficients,
Gk’ multiplying the statistical tensors (this approach is described in
Section I.2.1). The attenuation of the angular distribution due to the
hyperfine interactions is usually significant in case of thin-target
experiments, while all the Gk’s equal unity if the decaying nucleus has been
stopped in the target prior to the 7 decay. Introducing the decay
statistical tensors, ka, one can shortly represent the basic formula 1.33,

including the hyperfine interaction effect, as:

2
d”g
an .~ = %z (%) e By (DI Yy, (6,5 4,) 1.41
where:
R (I,I,) = 5= @ T,6,60, FL(OWT,T) 1.42
ky“rte) T aq(@vr Ckky A OAON Tk £ :

is the decay statistical tensor describing the mixed electric and magnetic
transition from a state I to a state If. The Coulomb excitation statistical
tensors are purely real for even values of k in the frame of coordinates
introduced above, thus Pry = p:x. Moreover, taken into account the selection
rules for electromagnetic transitions, it is easily seen that the products

5,5%

real

are also real. Consequently, the decay statistical tensors are purely

The above formulas can directly be used to describe y-decay of a
level fed exclusively by Coulomb excitation. With nultiple excitation,
however, significant feeding from decay of higher-lying levels must be taken

into account. The related modification of the statistical tensors can be
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expressed as:
ka(I,If) + ka(I,If) * r[l ka(xn,l) B (I,I1) 1.43

where the summation extends over all levels In directly feeding level I.

The explicit formula for the Hk coefficients is:

1.44

1/2
[(21+1) (21 +1)] +T ke
B (T,L) = ra—— L o faeon g 1 3

where c()\) is the internal conversion coefficient of the In+I transition.
Formula 1.44 is used to sequentially modify the deexcitation statistical
tensors, starting from the highest non-negligible levels. This operation
transforms the deexcitation statistical tensors, which, inserted into 1.41,
define the unperturbed angular distributions following Coulomb excitation.
One must however take into account experiment—related perturbations, namely
the effects of the detection methods and relativistic corrections due to in-
flight decay. These effects can be significant when using thin targets and
heavy ion beams. An overview of the methods used in GOSIA to account for

experimental perturbations is presented in the following subsections.
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I.2.1  NUCLEAR DEORIENTATION EFFECT

In typical Coulomb excitation experiments, both projectile and target
particles recoil into vacuum in highly excited iomic states which
subsequently decay to a ground state. The fluctuating hyperfine fields cause
the depolarization of the nuclear states, the effect known as nuclear
deorientation effect. This in turn causes the attenuation of the angular
distribution of the 9-rays which can be accounted for by introducing the
spin and lifetime dependent attenuation coefficients G , multiplying the
decay statistical tensors. The widely known Abragam and Pound theory [ABR53]
has been extensively used to describe nuclear deorientation and is proven to
work well in cases where the particles recoil into high-pressure gas.
However, significant discrepancies from the Abragam and Pound model were
detected for recoil into vacuum. We therefore use (with some modifications
introduced) the two-state deorientation model ( [BOS77], [BRE77]), which
seem to correlate well existing data despite the far-reaching simplification
enforced by the complexity of the problem

Within.the framework of the two-state model, the electrons may
either belong to a "fluctuating® state while the excited electronic
structure decays to the ground state or to a "static® state, corresponding
to the equilibrium configuration. Since the excitation and decay of the
v stripped electron shells cannot be described exactly it is assumed that all
the processes taking place in the fluctuating state are purely random. The
rate of transition from fluctating to static state, A", is an adjustable
parameter of the model. The time-dependent deorientation coefficients G (t)

are then given by :

% t ,
G, (t) = e‘A ‘tG (fluct.)(t) . f A*G(fluct.)(t ) e
k k 0 k
) 1.45
t G£Stat')(t—t )dt
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where (see [B0S77], [BRE77] and references therein for the details of the

derivation):

a{(5638) oy = cas « (1-<ay>)e T 1.46
k k ¥

with <ay> given by:

2
_ v _(eF)? PRk 2
@y =ty - LG} 1.4

F being the vector sum of the nuclear spin I and the electronic spin Jl' Jl
is the ground state spin of the deexcited atom, i.e. the ground state spin
of an atom with the charge number equal to the charge number of the
investigated nucleus less the number of stripped electrons. To determine
the atomic ground state spins Jl and their probabilities p£J ) we use the

standard Nikolayev-Dmitriev stripping formula [NIK68]:

1
012008c

1+ (=
gy =20 *°

GQ .= (Qo(l"h)>

745,573

1.48

1/2

where a Gaussian charge state distribution centered around Qo with the width.
UQ is assumed. [ has the meaning of the width of the Larmor frequency
distribution resulting from the assumption of many ionic ground states, as
well as many long-lived excited atomic states, involved in the static paft
of the interaction. This distribution is assumed to be Lorentzianm, with T
treated as an adjustable parameter of the model. Fluctuating state

attenuation factor G(£1“Qt°)(t) is given by:

e{EIuet) o (1n 7 Jexp(-A8) 1.49
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where T, is the mean time between random reorientations of the fluctuating

hyperfine field and :

l<ap - awhr?
A = ™ (l—exp(——I:ZE;;—)) 1.50

with (w2> being an average Larmor frequency in the fluctuating state:

. 1 a%(3,) ~
> = 3k(k+l)§ p(ji)“"gﬁ_—_Ji(Ji+1) ' 1.51

Practically, the averaging over fluctuacting state atomic spins Ji in 1.51
is not possible since the spin distribution is not known. One must therefore
use the single mean value of Ji,treated as one more model parameter. The

parameter a(Ji) iz defined as:

] 52
i

a(ji) =4

n

where By is the nuclear magneton and g stands for the gyromagnetic factor.

The mean magnetic field B in fluctuating state is approximated as:

X
B =KD 1.53

with both K and x being adjustable parameters.

The formula 1.49 is only valid, however, for t much larger than T -
Taking into account that T, is of the order of a few picoseconds, which is
about a typical lifetime of the collective nuclear levels, and that we are
interested in time-integral attenuation coefficients, we have to introduce a
correction to 1.49 in the time range of T, Sinpce Gcfluet')(t) can also be
easily derived for t+0, it is practical to introduce an interpolating
function between time ranges t+0 and t much greater than T being chosen as
a linear combination of two exponential time-decay functions which allow to
keep the mathematics at the minimum. This procedure yields for the time-

integral coefficients Gk:
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2
® A T (r-2p"T+T )
G = M [ 6, (t)exp(-At)dt = ¢ 1 kI Ic 1.54
o - (r+p7q) (x+2p77)
where:
1*A*TI(1+;i¥;FTI ) 1.55
GBS o I .
=
r

is an original formula from ([BOS77], = 1/)\I is the mean lifetime of a

nuclear state, while r and p are given by:

3
r= (A +kk)TI+1 1.56
2 2. 12.11/2
(ON248), T _(<Wo>-Ae)) 43\
p = Xk ke k k 1.57
4kac :

The correction to the original model in most cases does not exceed
10% and is easily evaluated since no additional parameters have been
introduced. The recommended parameters of the nuclear deorientation model

are listed in sectionm IV.3, included in the description of the VAC switch of
the CONT suboption. -
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I.2.2 RELATIVISTIC ANGULAR DISTRIBUTION CORRECTION

The coordinate system used to evaluate the angular distribution of the decay
7-rays, having the z-axis coincident with the laboratory-fixed bean
direction, can easily be translated to the fixed laboratory system just by
proper definition of the ¢ angle, taking care of the rotation of the x-y
plane, dependent on the recoil velocity direction. This is true as long as
the relativistic effects can be neglected and the tranformation from the
decaying-nucleus-centered system to the laboratory system can be treated as
Galilean. Howevef, this assumption may not hold for heavy-beam, thin-target
experiments. In this case the recoil velocity can reach up to 10% of the
velocity of light, so that the transformation from the decaying nucleus
centered system of coordinates to the laboratory system should be
Lorentzian. The first order description of this effect is given in [ALD75]
while an alternate approach, based on second-order Lorentz transformation of
decay statistical tensors is presented in [LES71] and is actually used in
GOSIA, fitting well the deexcitation formalism employed by the code.

Denoting v /c as [ and using RN for recoiling nucleus centered system

racoil

with the z-axis defined by the recoil direction and LAB for the laboratory-

fixed system we obtain, to second order in g

LAB RN
W08 _ Pyl v e 1.58
; |

where the angular distribution W can shortly be written as:

RN
gg;_ié¢ﬂl =L Y, 0. 1.59

k_even

which is basically a short form of 1.33. It is assumed that the statistical

tensors P ©f 1.33 have been modified to account for the feeding from above
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and the deorientation effect. Transformation of the 3, tensor to the RN
system is easily done using the rotation matrices D: ’ (1.38). Operators U
>4

and V are defined as:

U=T + 2cos(8) : 1.60

V=" 2, 4cos(8)°T + 6cos?(5) _ » ‘ 1.61
where:
T = % (sin(8) e—i¢ L, - sin(6) ei¢ L] 1.62

L, and L_ being the raising and lowering operators for spherical harmonics:

L+ka

i

[ CesDIY2 Y 1.63

LY, =

. i

Qo) Gepe 12 1 1.64

The transformation 1.58 changes the even-order spherical harmonics to the
linear combinations of spherical harmonics. Therefore, the effect of the
modification 1.58 on the angular distribution of §-rays can be represented
‘as a modification of P i tensors. Ordering theArelativistic correction by

the powers of f§ we can finally write:

AB
if mm=£”wm+pg mew“+fx b Ty O8) 168

7 7 even

where the bkx tensors result from 1.58 and are given by linear combinations
of a _ components. The result of 1.65 can be represented as modified
statistical temsor and rotated back to the laboratory frame of coordinates.
It should be noted that due to relativistic correction, terms involving odd-
k spherical harmonics appear. The maximum k value is increased by 2. The
relativistic correction formalism presented above results in an elegant
nodification of the decay statistical tensors and is used to the full extent
in GOSIA despite the minor importance of some of the correction terms
involved.
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1.2.3. GAMMA DETECTOR SOLID ANGLE ATTENUATION FAGTORS

Discussing the angular distribution of the 7-rays we have been so far
concerned only with a2 well-defined direction of observation, given by the
pair of angles (9g,¢g). To reproduce an experiment one must, however, take
into account the finite size of the 7 detectors as well as the 7-ray
absorption mechanism. A practical method to account for these effects has
been suggested by Kranme ( (KRA72] and references therein). This method is
applicable for the coaxial germanium detectors, almost exclusively used in
the type of the experiments we are concerned with. The method of Krane
introduces 7 energy dependent attenuation factors, Qk(Es), multiplying the

final decay statistical tensors, defined as:

5, ()
Q (B,) = ——E= | 1.66
I,(® )
where
?pax . ,
Jk(Eg) = é Pk(cosa)K(a)(l-exp(—T(Eg)x(a?)51n(a)da : 1.6

and a@ is the angle between the detector symmetry axis and the Y-ray
direction, T is an energy~dependent-absorption coefficient of the active
germanium layer and x stands for the angle-dependent path length in the
detector, Pk are standard Legendre polynomials, while the function K(a) can
be introduced to account for the effect of the 7-ray passing through the
inactive, p-type core of the detector as well as the absorbers in front of a

detector, commonly used to attenuate X-rays. K(a) can be written as:
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k(@) = exp-(L7; (Bx; (@) | 1.68

. where the summation extends over various absorbers and the p-core. The Qk
factors, resulting from 1.66, have to be evaluated numerically. In order not
to repeat this procedure for every 7 energy of interest, it is practical to
£it a simple analytic function describing the energy dependence, as
discussed in section III.

To reprodce the experiment ome should, in addition to the effects
discussed in previous sections, include the integration of 1.33 over the
particle detection range and, at least for the long-lived states include the
correction due to in-flight decay, i.e. the time-dependent change in the
angular position and the solid angle of a detector as seen by the decaying

nucleus. These effects are treated numerically in GOSIA, the algorithms used

being presented in Chapter III.
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II. APPROXIMATE EVALUATION OF EXCITATION AMPLITUDES

Numerical iﬁtegration of the system of differential equations 1.17, defining
the excitation process, requires most of the computational effort needed to
reproduce the experiment. Usually this takes 90-95% of the total computer
time: for .each evaluation of the f-yields following Coulomb excitation.
Therefore, it is essential to replace the exact Coulomb excitation formalism
by a fast and sufficiently accurate-approximation in order to enable
-iterative fitting of matrix elements. To construct such an approximation,  we
first limit ourselves to the couplings Am=0 and Am==1 only (as pointed out
in Chapter I, the strength of the interaction rapidly decreases with Am) and
we neglect the magnetic excitation. Denoting the w-dependence of the right-
~hand side operator of 1.17a by flm(w) we can rewrite the system of
differential equations 1.17a as:

d
- L e

where flm(w) is explicitly given as:
flm(w) = «inm(w)exp[i(ESinhu+w)] _ 2.2

vhere M) = <k||EQD| |n>.

For both m=0 and m=+1 the function flm(w) can be expressed as a sum of two
components, one antisymmetric in # and real, the other symmetric in w and
imaginary:

£1,(0) = £,2() + if,5(w) 2.3
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These properties of the f(w) function assure the unitarity of the right hand
side operator of 2.1. Significant simplifications of the Coulomb excitation
formalism can be achieved by replacing the w-dependent functions by the
constant effective interaction strengths extended only over finite ranges of
w. For most important Am=0 couplings fB () is localized around w=0, while

(w) is negligible anywhere except the ‘vicinity of #w,, w, being case-
dependent, Following this observation, one can approximate the total
interaction by assuming the eifective, constant interaction strengths
covering three regions completely separated in » - an antisymmetric part,
extended over a finite w range around some value of w=-u,, a symmetric part
around w=0, and the reflection of the antisymmetric part around w=w,, as

schematically presented below:

if§m= le(w) cos (€sinhw+w)

f§m= % (w) sin(esinhw+w)

»
L)

i
|
{
i
i
N w0
= Do b-)o

Am=+1 couplings can be treated in a similar way, although the separation of
symmetric and antisymmetric components in @ is not as pronounced in this
case. Nevertheless, taken into account the weakness of these couplings and
their second-order importance, it is not worthwhile to comnstruct more
accurate approximation.

According to the above model, the system of differential equations
describing the Coulomb excitation can be represented as three independent

equations of the form:
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&5
it

Al* a(w) ; £O= a(-»); Uy S WS gy

2.4
da _ 1A, a(); a3y = a(-2u, + w); ~2utw, < W< 2w
dw 2 ' 70 0 17 01 -0l
da = -4 " a(w) ; ay = a(2u. - Q ) 2Wa-w, < WS w
dw 1 ' 70 0 17 01 -1

" ]

where the matrix operators A® result from replacing'the functions flm of 2.2
with effective constants over specified ranges. The sequential set of

equations 2.4 has an obvious solution:

a(®) = exp(—Al)vexp (-iAg) exp (Al) a (-x) 2.5

where the matrix operators A correspond to A" in 2.4, differing only by
appropriate scaling to eliminate the independent variable ranges from the
final formula. The A matrices are purely real and fulfill the symmetry
conditions:

A = ~A

1ki lik

Aoks = Aaix

The relations 2.8, resulting from the symmetry properties of the reduced

2.6

matrix elements and coupling coefficients ¢, assure the conservation of
total excitation probability. The matrix elements of A can be explicitly

written as:

=y . (m) , _(m)
AMae =M TSt g
2.7
o), (Im) . (Im) '
Aoie =Mk " Ci ° %
where qilm) and q:lm> are effective strength parameters, replacing ffm“)(w)
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]

and ffm’>(w), respectively. These parameters are functions of € and {, thus
for a given experiment one needs to determine them as functions of ¢ only,
the excentricity € assumed constant. The most flexible way of obtaining the
q parameters is to extract them from the exact excitation calculation for a

two-level system. Let us consider the simple case:

_ DY e
B | '

I™ = o*

with the reduced matrix element ¥ connecting both levels. For this case, the

A matrices are explicitly given as:

0 -&io) M¢
Ay =« . (0 .
2.8
Lo (10 | |
2= 0, ao 0

and, according to 2.5:

2(0%) = cos(a*ug) + isin (¢ ug) ¢ sin (23 u)
a(1") = - isin(d*Pug) : cos (2¢*xg) +
The above yields:
qéko) - Arccosége 2(0))
2.10
o = - arerg(2200) e

Using 2.10 it is possible to extract q parameters substituting the
excitation amplitudes resulting from the exact calculation, i.e. the

solution of 1.17. A similar procedure can be applied to find the q
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parameters corresponding to Am=*1 coupling. ‘

The approximate formula 2.5 works best in cases where the ¢-
parameters range is not excessively wide. This practically assures good
performance in all cases of multiple Coulomb excitation, since, as discussed
in Chapter I, small values of ¢ are required to enable multiple excitation.
To demonstrate the reliability of the semianalytic approximation, let us
consider the test case in which we simulate the Coulomb excitation of a
Z=46, A=110 nucleus by a 200 MeV %8Ni beam. The target nucleus is described

by the level and coupling scheme (of course having nothing to do with the
real **°pd):

42

6+
2.4

AQ

" /\l Lt
A-g ) 4.5 o.g

gt | g

A An
. Cf

level energy differences all equal to 0.5 MeV. All reduced E2 matrix
elements are given in units of e.b. Comparison becween the exact solution

of Eq. 1.17 and the approximate solution using 2.5 is as follows:
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Level Excitation amplitude(Population)

1.17 2.5
oF .494 + .018i (.244) .499 - .1451 (.265)
27 .134 + .139i (.032) 161 + .096i (.035)
4t -.205 + .391i (.194) -.186 + .407i (.200)
8, -.176 + .388i (.145) -.192 + .312i (.134)
27 .276 + .266i (.119) .284 + .157i (.105)
4 -.482 - .165i (.260) -.445 - .236i (.254)

The A matrix approximation is generally more than adequate to
calculate derivatives of level populations with respect to the matrix
elements, using internal correction factors (see chapter III) to:account for
differences between the approximate and the exact approach. It also
provides a useful tool to investigate (at least qualitatively) the Coulomb
excitation process. As an example, let us consider the influence of the

quadrupole moment in the two-level system:

Mo
.,_.__19_ 2" =0

1
0

+

eampmanTmIe

extensively discussed in the Alder-Winther monograph [ALD75]. To simplify

the notation, let us denote:

o™ 02"y + 1y (B <
q£20)(0 s2") o M 5(22) = q 2.11

R PR PRl
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Note that there is no antisymmetric component of the interaction for the

quadrupole moment, since ¢=0.

The A matrices can then be written as:

0 -q
1
Al = (q
1 0
=09
2 'q ¢
yielding:
cosqy + sinql
exp(iAl) = (*sinql cosqy
1.9 . ig .
) 1g/g ,COSP- i, sinp - sinp
xp(-idy) = VAT 2 P
e sinp cosp + §i;sinp
where p = % (9 2, 4q2)l/2

Using 2.5 one gets:

1 ie1Q/2 sinp

Ayt = 5 > (@sin 2q1 - 2qcos 2q1)

which results in an excitation probability:

. 2

55%—2 ( sin 2q1 - 2q cos 2q1)
p .

P2+ =

NI

2.12

2.13

2.14

2.15

The formula 2.15 is a generalization of the second-order perturbation theory

result. Taking into account only the lowest order terms in a q and @ one

gets:

9
Py, ® @ (1-29+—L)
q
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as predicted by second-order perturbation theory. It should be observed,
that the influence of the quadrupole moment is significant only if the ratio
of antisymmetric to symmetric q parameters is high, which physically
corresponds to a large value of (. As can be seen from 2.14, the primary
effect of the static moment is rotation of the complex excitation amplitude,
due to the exp(if§/2) factor. This allows rather accurate measurements of
static moments in cases of interferring paths of excitation, i.e., when a
state is excited in a comparable way via two or more sequences of couplings.
In the situation like that the phases the partial excitation amplitudes are
summed with are of primary importance. -

In general, 2.10 is only a semianalytical formula, since for
complex cases exponents of A matrices must be evaluated numerically.
Nevertheless, numerical determination of exp(A) operators is much faster
than the integration of a system of differential equations. Application of
the A matrix approximation for fitting of matrix elements to reproduce
experimental data will be discussed in some more detail in Chapter III. It
is also worth observing that the truncation of Taylor series approximating
the exp(A) operators provides a way tO‘geﬁerate perturbation theory of a

given order, thus being useful to investigate weak excitation processes.
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IIT. NUMERICAL METHODS

GOSIA is deéigned to perform various functions defined by the user-specified
sequence of options. In a simplest mode GOSIA can be used to calculate the
excitation probabilities, populatlon of the levels and y-decay statistical
tensors 1.30, thus prov1d1ng an equivalent of COULEX. Activating the 7y-decay
module of the code, one can extend this type of calculation to obtain the v
yields for a single value of bombarding energy and scattering angle, as well
as perform the integration over the specified ranges of the bombarding
energy ( due to the projectile energy loss in a target ) and of the
projectile scattering angle to reproduce real experimental conditions. These
calculations require an input set of matrix elements treated as fixed data.
The main purpose of GOSIA is, however, to fit the matrix elements to
reproduce available experimental data. GOSIA can handle simultaneously the
experimental 7 yields (up to 48000) observed in 50 independent experiments.
Additional data, i.e. branching ratios (max. 50), lifetimes of the nuclear
levels (max. 10), E2/M1 mixing ratios (max. 20) and prev1ously measured E2
matrix elements (max. 30) may also be used. All these data and their
experimental uncertainties are used to comstruct a least-squares statistic,
usually called xz or penalty function. The minimum of this statistic,
treated as a function of matrix elements, defines the solution, while its
distribution in a vicinity of the minimum determines the errors of fitted
matrix elements. In the present version of the code, the investigated
nucleus is described by maximum of 7§ energy levels, with the number of
magnetic substates not exceeding 600. The level= may be coupled with up to
500 matrix elements (El1 through E6 and M1, M2), any number of them allowed
to be declared as the variables to be fitted.

As mentioned before, direct use of the full Coulomb excitation
formalism to perform the minimization is out of question due to computer
time necessary for repeated calculations. The mimimization can be

accelerated using the approximation presented in Chapter II. Significant
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amount of time can also be saved if the recoil-velocity correction ( I.2.2)
is neglected. The effect of both replacing the full excitation formalism by
the matrix approximation and neglectirg the relativistic correction is oaly
weakly dependent on the matrix elements, therefore it is feasible to
introduce the "correction factors", accounting for the differences between
full and approximate calculations which are assumed to be independent of the
fitted matrix elements. The minimization can thus be performed using only
the fast, approximate formalism, with correction factors refreshed by
running the full calculation only periodically. In addition, the Coulomb
excitation approximation is only applied to Am=0 and Am==1 couplings, thus
an effect of truncation of the number of magnetic substates being taken into
account is also included in the correction factors, since it is not strongly
dependent on the actual set of matrix elements.

Further acceleration of the fitting procedure is made possible by
replacing the integration over experiment-dependent scattering angle and
bombarding energy ranges with a single calculation of the Coulomb excitation
induced 7 yields assuming the mean values of these parameters. This
approximation is also not explicitly dependent on the fitted matrix
elements, thus the difference between the integration procedure and the
result of using the mean values of bombarding energy and scattering angle
can be accounted for by introducing another set of correction factors,
treated as constants. Actually, it is convenient to apply this correction to
the experimental yields, i.e. to rescale the experimental data according to
the comparison of integrated and "mean” yields. This is initially done using
a starting set of matrix elements and the resulting "corrected experimental
yields" are subsequently used as the experimental values for fitting (this
procedure is presented in detail in Section III.4). Thus, the fitting of
matrix elements is performed using two levels of iteration -viirst,
external, is to replace the experimental ranges of bombarding energy and
scattering angle with the average values of these parameters, while second,
internal, is the actual minimization of the least-squares statistic. After
the convergence at the internal level is achieved, one should recalculate
the correction to the experimental vyields with the current set of matrix

elements and repeat the minimization. Usually, for thin targets and not
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excessively wide range of scattering angles, the second repetition of
external iteration already yields negligible changes in the matrix elements
found by the minimization. It has also been checked, that even if no
particle coincidences were required only 2-3 recalculactions on the external
level were necessary despite the integration over full solid angle.

Estimation of the errors of fitted matrix elements is a final step
for the Coulomb excitation data analysis. This rather complicated procedure
is discussed in Section III.6. A separate program, SELECT, has been written
to reduce the considerable computational effort required for this task using~
the information obtained during minimization. This information, preprocessed
by SELECT, is fed back to GOSIA. Optionally, the results of minimization and
error runs can be used to evaluate quadrupole sum rules by a separate code
SIGMA ( Chapter V ).

The extraction of the matrix elements from experimental data
requires many runs of GOSIA. During these runs GOSIA creates and updates a
- number of disk files, containing the data needed to resume the analysis or
to execute SELECT or SIGMA codes. The details of permanent file manipulation
are presented in Chapter VI.

Relatively modest central memory requirements of GOSIA (about.
1.5MB) are due to the sharing of the same memory locations by different
variables when various options are executed and to replacing the
straightforward multidimensional arrays (such as e.g. matrix elements) with
catalogued vectors and associated logical modules. The description of the
code given in this chapter will therefore not attempt to account for its
internal organization, which is heavily dependent on the sequence of options
executed and, in geﬁeral, of no interest to the user. Instead, it will
concentrate on the algorithms used and the logic employed in GOSIA. The
basic knowledge of the algorithms is essential since the best methods of
using the code are strongly case-dependent, so much freedom is left to the
user to choose the most efficient configurations according to the current
needs. .

All three codes- GOSIA, SICMA and SELECT- are writtenm in- the
standard FORTRAN77 to make their implementation on various machines as easy
as possible. The necessary modifications should only involve the output
FORMAT étatements, which are subject to some restrictions on different
systems.
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IIT.1 COULOMB EXCITATION AMPLITUDES AND STATISTICAL TENSORS

The state of a Coulomb excited nucleus is fully described by the set of
excitation amplitudes, aIu(Mo)’ defined by the solution of Eq.1.17a at w=w,
or, approximately, by the matrix expansion 2.5., used for minimization and
error estimation. To set up'the system of coupled-channel differential
equations 1.17a one has first to define the level scheme of an excited
nucleus. Certainly, from a practical point of view, the level scheme should
be truncated according to the experimental conditions in such a way that
reasonable accuracy of the excitation amplitudes of the observed states is
obtained with a minimum of the levels included in the calculation. As a rule
of thumb, two levels above the highest observed state in each collective
band should be taken into account to reproduce a given experiment reliably.
Truncation of the level scheme at the last observed level leads to an
overestimation of the excitation probability of this level due to the
structure of the coupled-channels system 1.17a, while by including
additional levels above, even if their position is only approximately known,
it is possible to eliminate this effect.

'The solution to the coupled-channels system 1.17a should, in
principle, involve all magnetic substates of a given state |I>, treated as
independent states within a framework of the Coulomb excitation formalism.
However, due to the approximate comservation of the magnetic quantum number
in the coordinate system used to evaluate the Coulomb excitation amplitudes
(as discussed in Chépter I) it is practical to limit the number of the
nagnetic substates taken into account for each polarization of the ground
state, MQ. In any case the excitation process follows the "main excitation
path", defined as a set of magnetic substates having the magnetic quantum
number equal to Mo, the remaining magnetic substates being of less and less
importance as the difference between their magnetic quantum number and M
increases. Relative influence of the excitation of magnetic substates

outside the main excitation path is experiment-dependent, therefore GOSIA
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allows the user to define the number of magnetic substates to be taken into
account separately for each experiment. This choice should b. based on the
requested accuracy related to the quality of the experimerntal data, keeping
in mind that reasonable truncation of the number of the magnetic substates
involved in Coulomb excitation calculations directly reduces the size of the
coupled channels problem to be solved.

The integration of the coupled differential equations 1.17a should
be in theory carried over the infinite range of w, which, practically, must

be replaced with a finite range wide enough to assure the desired accuracy

of the numerical solution. To relate the effect of truncating the w-range to-

the maximum relative error of the absclute values of the excitation

amplitudes, a , we use the criterion:
<

® wma.x

_cf° Qyo(e=1,v) dv —_£max Qyple=1,u) du

3.1

B |1
In
[

/ QXO(€=1'M) dw

where, as a worst case, we take into account the backscattering geometry
(e=1), thus Am#O couplings vanish for the electric excitations (there is no
magnetic excitation for backscattering, as discussed in Chapter I, moreover,
the magnetic excitation is weak enough to be neglected at the excitation
stage for any scattering angle, therefore we will limit ourselves to the
_electric excitation only). Factor 1/4 is introduced in 3.1 to account for
the further decrease of the importance of the excitation taking place at
large |w| due to the high-frequency oscillation introduced by the
exponential term of 1.17a. Using the normalization property of the collision

functions:

) |
[ 9y, (e=1,u)du = 1 3.2
P 1}
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and the asymptotic, pure exponential form of collision functions for large

|v] one finally gets:

: max 21
: W 2 Y lnac 3.3

where the values of a  can easily be found from the asymptotic form of the

1
collision functions and are given in.a table below, together with the

resulting W™ assuming a.‘;=10"5 which is the default value in GOSIA.

Table TII.1

Multipolar;ty a, w™™* for ac=10‘5
Bl -.693 .10.82
E2 .203 ' 5.96
E3 ’ .536 4.37
, B4 .716 ‘ 3.59
; ES .829 B 3.13
) E6 | 962 . 2.88

The range of integration over w corresponding to a given accuracy level
decrease, as can be seen in Table III.1, with multipolarity. Following this

observation, the coupling between energy levels corresponding to a given
multipolarity is being included in GOSTA only within the integration range
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assigned to this multipolarity, which is a time~saving feature in cases many
multipolarities have to be included. For M\ couplings, neglected so far, the
integration ranges have been set according to :

wmax(uxj = W™ (B (1)) . 3.4

The actual 1ntegratlon of the coupled-channel system of
differential equations 1. 17a is performed in GOSIA using the Adams-Moulton
predictor-corrector method. According to this algorithm, first the predicted
solution at w+4Aw, based on a knowledge of the solution at w+3Aw and the

derivatives at four points, w, w+Aw, w+2Aw and w+3Aw is found using:

a(wrdhy) = a(w+3Aw)+—— {553 (+30w) -593 (+Au) +373 (u+8u) ~95(w) } 3.5

and then corrected by:
3 (w+dde) = 8 (u+60u) ¥ {93 (u+44u) +195 (u+380) ~58 (s 280) +: (u+bu) } 3.6

where the excitation amplitudes are once again treated as a vector and a dot
symbolically denctes the differentiation with respect to w. The predicted
solution is used to obtain the derivatives defined by the right-hand side of
1.17a at w+4Aw, employed to evaluate the corrector 3.6. Stepsize, Aw, is’
controlled on a basis of the comparison of the predicted and corrected
solutions. The accuracy test parameter, d, is defined as 1/14 of the
absolute value of the maximum difference between predicted and corrected
excitation amplitudes at a current value of w. Stepsize is then halved if
dZac or doubled if dSac/SO. This procedure assures the adjustment of the
stepsize according to the strength of the interaction and is performed every
n steps, n being an adjustable parameter defined by the user ( n=1 used in
GOSIA as a default ). The Adams-Moulton integration algorithm with stepsize
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control is usually faster than Runge-Kutta type methods, thus it has been
employed in GOSIA despite some drawbacks. The most important one is when the
interaction, defined by the left-hand side of 1.17a, is weak in most of the
integration range, peaking only around some vaide of the independent
variable. In this case the stepsize will be subsequently doubled and can
beconme exéessively large when the strong interaction region is reached,
consequently, even though the loss of accuracy is detected, the overall
accuracy of integration would be already irretrievably lost. This situatien
actually happens for”tﬁe light ion excitatioﬁ ;r, generally, at small
scattering angles and can be detected by checking the sum of excitation
probabilities provided in the output of GOSIA. The recommended procedure if
the sum of probabilities differs significantly from unity is to switch off
the stepsize control for a given experiment using the INT switch of CONT
suboption ( see IV.3 ) rather than decrease the accuracy parameter a_. This
is due to the fact that GOSIA uses the table of Q. functions and hiperbolic
functions with a tabulation step Aw=.03 which defines the minimum stepsize
of the integration independent of the accuracy requested, allowing to obtain
the highest accuracy approximately corresponding to ac=10'6. Moreover,
changing the requested accuracy a_ may not solve the stepsize control
problem, but result only in extending the integration range, thus rather
making this problem more likely to occur.

An another drawback of the Adams-Moulton method compared to the
Runge-Kutta algorithms is that Adams-Moulton algorithm is not self-starting,
requiring the initial solutions at four points. This problem can be overcame
by employing the Runge-Kutta algorithm to provide the starting values, then
switching to the more efficient Adams-Moulton method (note that the same-
procedure is to be applied when the stepsize is changed, since restarting
the integration with different stepsize require the knowledge of the
solution at new independent parameter intervals). The Runge-Kutta
integration algorithm has been actually used in COULEX to providelthe
starting solution for both the initialization of the integration and the
changes of stepsize. In GOSIA the starting solutions are found from a first-
order perturbation approach, valid at large values of w, using the

asymptotic form of the collision functions. It is assumed, that the ground
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state is connected to at least one excited state with E1,M1 or E2 matrix
element. The initial excitation amplitudes can then be found as the
combinations of trigonometric and integral-trigonometric functions, the
latter being evaluated using rational appfoximation ( given for example in
[ABR72] ). To fully eliminate switching to the Runge-Kutta algorithm, the
new starting "values when changing the stepsize are evaluated using backward
. interpolation. This procedure is reliable enough to assure reasonable
accuracy while comsiderably speedlng up the integration.

: The integration:of the system 1.17a should be in principle
‘repeated for each possible polarization of the ground state, Mb' However,
the reflection symmetry in the plane of the orbit yields in the coordinate

system used to evaluate the excitation amplitudes:

AW+IO-I
ar, () = (-1) ap _n(=¥p) 3.7
where An=0 if there is no parity'chaﬁge between the ground state and a given
excited state | I> and An=1 otherwise. Using the symmetry relation 3.7 one
“has only to solve the coupled-channel system 1.17a for the ground state
polarizations M <0, the solution of the coupled-channel system for M 20
being defined by the relation 3.7. As mentioned before, due to- the
approximate conservation of the magnetic quantum number in the frame of
coordinates used, one practically has to take into account only a limited
_Subset of.ﬁagnetic substates beyond the main excitation path. This
explicitly means that if n magnetic substates have been specified by the
user to be included in the Coulomb excitation calculation then for each
excited state, I, and ground state polarization, MO,YGOSIA will catalog the
magnetic substates according to the inequality:

min(I,—Mo+n) 2 m 2 max(—I,—Mo~n) 3.8
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which, by virtue of 3.7, defines simultaneously a set of excitation
amplitudes obtained with the inverse polarization of the ground state in a

range given by:

max(—I,Mo—n) $m ¢ min(I,M0+n) 3.9

allowing for the summation of excitation amplitudes to form a statistical
tensor defined by 1.31 for +M° and -MO at the same time.

A special simplification of the solution of 1.17a occurs for the
ground state spin equal to O ( even-even nuclei ). In this case only m<0
substates are explicitly included for numerical integration, the values of
the excitation amplitudes and their derivatives for md>0 substituted during
the integration using 3.7. Therefore, a separate setup of the system of
coupled-channels equations 1.17a is constructed by GOSIA for even-even
nuclei, resulting.in the appreciable increase of the speed of the
integration if Io=0.

The statistical tensors P\, are first evaluated according to 1.31
in the coordinate system used %o calculate the excitation amplitudes, then
rotated to a new system, more convenient to describe the 7-deexcitation, as
discussed in Chapter I. This transformation is done using the rotation
matrices according to 1.40. Rotated statistical tensors are treated as an
interface between the Coulomb excitation and 7-deexcitation modules of the
code, providing the complete information needed to calculate the 7-decay.
These tensors can be either calculated using the full Coulomb excitation

formalism or using the fast matrix approximation.
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IIT.2 APPROXIMATE EVALUATION OF THE COULOMB EXCITATION AMPLITUDES

The matrix approximatidn 2.5 is used in GOSIA to e?aluate the Coulomb
excitation amplitudes within the minimization and error estimation modules.
'The level and matrix elements scheme used for this procedure is identical to
that employed for the full calculation , as presented in III.1, with two
exceptions. First, the number of magnetic substates taken into account
beyond the main excitation path, n, can only assume values of O or 1.
Second, only El through B4 multipolarities are used to construct the matrix
approximation, which practically means that ES and ES matrix elements can
not be fitted, being only included in full excitation formalism to satisfy
the possible theoretical interest ( although not foreseeable in a near
future ). The only additional information needed is the knowledge of the
effective strength parameters, q and qs; as introduced in the formula 2.7.
The effective strength parameters depend on the experimental conditions as
well as on the energy difference of the levels coupled by a given matrix
element, thus, in principle, should be assigned to every matrix element
independently for each experiment. However, from a point of view of the
memory requirements, this approach is not feasible, therefore it has been
chosen to create the maps of q parameters at the discrete ¢ points for every
experiment and to obtain the actual parameters using'the linear
interpolation. The q parameters should be independent of the coupling
strength ¢ ( 1.17c ) if the model were perfect, but practically some weak <
dependence is still present. A significant improvement of the matrix
approximation accuracy can thus be obtained by including the first-order ¢-

dependence correction for the prevailing Am=0 couplings, which is equivalent

to define the q-parameters as:
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q(dm=0;¢£,¢) = a(§)MC + b(¢) : 3.10

where M symbolically stands for a matrix element associated with a given
coupling. The q parameters for Am=21 couplings are still treated as the
functions of & only, the possible improvement of the approximation
introduced by the ¢-dependence correétion being negligible because of the
weakness of these couplings.

The map of the q parameters is generated and stored when a
separate option ( IV.12 ) is executed and read if either the minimization
command ( IV.15 ) or the error estimation command ( IV.6 ) is encountered.
For each experiment GOSIA establishes the ranges of § and ¢ according to the
level scheme (the maximum decay energy defines the maximum value of §) and
the specified limits of the matrix elements ( IV.14 ) which determine
maximum value of ¢. The q parameters are extracted following the method
discussed in Chapter II ( 2.10 ) using the two-level system described using
preset values of ¢ and £. For each ¢ meshpoiné fifty values of ¢, covering
the whole range, are used to fit the coefficients a and b ( 3.10 ) by the
usual linear regression ( Am=0 only ). Ten { meshpoints are used for all
multipolarities, thus the map consists of ten pairs ( a,b ) for each
multipolarity and experiment for both q and q, corresponding to Am=0
couplings while Am=#1 are treated as ¢(-independent, therefore only
coefficients b are computed and stored.

The q parameters map, once generated, should not be recalculated
unless the ranges of £ or ¢ were changed by including additional levels or
couplings resulting in a higher maximum decay energy or by expanding the
limits of the matrix elements. It is always recommended to keep these ranges
at a reasonable minimum, most importast the range of £. This can be achieved
by eliminating the couplings between levels having no influence on both
excitation and deexcitation, but creating the high-energy decays. As a rule,
the matrix approximation reliability improves with decreasing values of ¢,
thus by narrowing its range one usually obtains faster convergence of the

minimization.
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The approximate excitation amplitudes are computed according to
the formula 2.5, with A matrices defined by 2.7. An algorithm:

S © _ I

p

a (@*1) 1, (a) 3.11
p n+l P

S (1) _ ] () | ] (as1)
p

equivalent to the Taylor series expansion is used to iteratively evaluate
the product of the matrix exponentials acting on the initial amplitudes
vector a = a(w=-2). The convergence of this procedure is controlled by
monitoring the sum of excitation probabilities and the evaluation of matrix
exponentials is truncated if this sum differs from unity by less than user-
specified accuracy. In some cases, the summation 3.11 may not converge
within requested accufacy due to the computer-dependent roundoff error
propagation. This usually happens when the matrix elements of A operators
are large, so to overcome this problem it may be necessary to logically

subdivide the matrix operators using the identity:

exp(A)a = exp(A/2)exp(A/2)a ' 3.12
which is done by GOSIA automatically, with the message:

EXP(A) EXPANSION FAILURE- EXP. N NEW SUBDIVISION(L,X)
issued, specifying experiment number N and number of times the subdivision
of either Al or Az operator (L=1 or 2) was performed K. Usually a single
subdivision is sufficient to assure the default accuracy 107% for any
Coulomb excitation experiment, thus more subdivisions done probably points

out to the unreasonable values of the matrix elements.
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The matrix operators used for the fast approximation are sparse
and are never stored as matrices. Instead, the expansion $.11 is performed
using the fact, that non-zero elements of these operators correspond to the
matrix elements, as follows from 2.7, therefore the catalog of the matrix
elements is used to avoid dummy multiplications. The resulting excitation
amplitudés are then used to calculate the statistical tensors exactly like

the solution of the full Coulomb excitation coupled channel calculation.
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ITT.3 CALCULATION OF THE GAMMA YIELDS

The Coulomb excitation statistical tensors evaluated in the coordinate
frame, having the z-axis along the ‘ncoﬁing beam direction and the x-axis in
the scattering plane (Fig. I.3), are the interface between the excitation
and deexcitation modules of GOSIA. The deexcitation hodule, activated
automatically if OP,YIEL (IV.29) is encountered in the input stream, first
establishes the decay scheme, common for all the experiments defined. The 7-
decays are ordered "chronologically®, i.e. from the highest to the lowest to
take into account the effect of feeding. This has nothing to do with the
user-defined sequence of the observed 7 yields, which can be defined
arbitrarily and will be assigned by the code to the proper decays on a basis
of the initial and final state indices provided by the user in an
experimental yields file (IV.30). The initialization of the decay module
involves the calculation of the Fk(XX’IfI) coefficients for each decay (see
Eq. 1.35) which are not dependent neither on the matrix elements nor on the
experimental conditions and can be stored to avoid recalculating them for
each experiment and for each set of the matrix elements during the
X divided by the
appropriate matrix elements (see Eq. 1.25). The evaluation of the v vields

minimization. The same holds for the decay amplitudes, §

is then fast compared to the Coulomb excitation calculation, involving, for
different experiments and matrix element sets, only the recalculation of the
deorientation effect and the transformation of the Coulomb excitation
statistical tensors to the decay statistical tensors, ka,
feeding from above (1.43). The tensors ka are calculated in the system of
coordinates originating in the decaying nucleus, as defined by Fig. I.3,
thus one has to transform them to the laboratory-fixed system. As long as
the distance traveled by the decaying nucleus is negligible this
tranformation consists of the relativistic velocity correction, cutlined in

Section I.2.2. It should be noted, that this transformation is time-
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consuming and it is not performed when calculating the gradients used during
minimization, its effect absorbed into iaternal correction coefficients
(I1I.5.3). Finally, using the symmetry properties of the decay tensors and
the spherical harmonics, the double differential cross sections for the 7
decay from.a state I to a state If can be written in the purely real form

as:

d% (1-1,) |
o op(6,) });ORkX(I,If;Hp)ka(G,’) (2c087($,4,)-6,)  3.13
Xz

where ka stands for the Legendre spherical function. It should be noted
that Eq.3.13 is given in the laboratory system of coordinates, differing
from the scattering plane oriented system by the definition of the ¢ angle.
The ¢ angle in the laboratory-fixed system of coordinates is given by the
difference between the particle ¢ angle and the 7 ¢ angle, therefore the
user-defined frame of coordinates is only restricted to have an origin
corresponding to the position of the target and the z-axis along the beam
direction, with the x and y axes defined arbitralily. As long as all the
angles are consistently given in the same frame of coordinates the
definition of the angular distribution is unique.

The double-differential cross section, defined by 3.13, describes
the angular distributionm of 7 rays assuming that the direction of
observation is well-defined, i.e. the detector used can be treated as 2
point detector. The finite size of a 7 detector results in the attenuation
of the angular distribution, which can be taken into account by introducing

the attenuation coefficients, § , transforming the decay statistical

. k’
tensors, ka, according to:

ka + kaqk : 3.14
The attenuation coefficients Qk are generally dependent on the geometry of

the 7 detector, the y-ray energy and the materials used for the 7-ray
detection. It is assumed, that the decay 7-rays were detected using the
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coaxial Germanium detectors, optionally equipped with a set of absorbers

frequently used to attenuate unwanted X~ and low energy 7-rays. Such kind of

an apparatus is almost exclusively used to study the discrete 7—raym
spectroscopy. Assuming that the symmetry axes of the (e detectors are
aligned with the target the procedure outlined in Section I.2.3 is used in !
GOSIA to evaluate the Qk factors. The absorption coefficients data for Qe -
and most commonly used absorber materials - Al, Fe, Cu, Cd/Sn, Ta and Pb - -
are built in the code. The Qk attenuation factors are 7-energy dependent, .
thus, as a compromise between the extensive storage and the necessity of
recalculating them during each step of minimization or error calculation, a j

two-parameter fit of the y-energy dependence is performed in a separate step .

and only the fitted parameters are stored on a permanent file read in by

- GOSIA prior to the first 7y decay calculation. The fitted formula, well )

describing the y-energy dependence is given by:

2
CZQk(EO) + CI(E7 - EO)

Gy + (B, - Eg)®

% EB,) = 3.15

where Eo=50 keV with no graded absorbers or only a combination of Al, C, and
Fe specified and Eo=80, 100, or 150 keV if the Cd/Sn, Ta or Pb layers were

employed as absorbers, respectively. The shift in "zero?® energy is intended -

- to provide a smooth dependence above the highest absorption cutoff point. It
is assumed, that the 7 transitions of energies below the highest cutoff
point are of no interest, therefore no attempt is made to fit this region.
Qk(Eo) in 3.15 stands for the attenuation cogfficient for the "zero® enefgy
calculated according to the prescription of I.2.3., while Cl and C2 are
fitted to reproduce the energy dependence obtained using this formalism.

To reproduce the experimentally observed 7 intensities for a given
beam energy and scattering angle GP the double-differential cross sections,
as defined by 3.13 including the 7 detector solid angle attenuation factors
(3.14), shoﬁld be integrated over the ¢ angle range defining the particle
detector shape for this scattering angle (note that from a point of view of
the Coulomb excitation an independent experiment is defined only by the

scattering angle and the bombarding emergy for the same beam). Also, the
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solid angle factor, sin(8). where 6 is the projectile or target laboratory
scattering angle, deperdent on which particle has been detected, should be
taken into account. The v-decay intensities, referred to as "yields", are

therefore defined in GOSIA as:

d% (1+1,)
Y(I”If) = sin(@p) / T an
b, T P

d .
¢p 3.16

where the integrand is given by 3.13. The integration over the ¢ angle is
trivial since the ¢~dependence is analytical, described only by a single
cosine function, as seen from 3.13. According to the input units requested
by GOSIA ( Section IV ) the yields will be calculated in units of
mb/srad/rad (.i.e. milibarns per steradian of the 7 solid angle per radian
of the particle scattering angle ). This holds for the 7 yields calculated
using OP,POIN (IV.18). The reproduction of the experimentally observed
yields should, however, involve the integration over the particle scattering
angle including the beam energy loss in the target, thus the fully
integrated yields, obtained using 0P,INTG, have a different meaning, as
described in Section III.4. |

So far, we have neglected the effect of the geometric displacement
of the origin of the system of coordinates due te in-flight decay, i.e. we
have assumed that all observed decays originate at the center of a target,
thus the relativistic velocity correction is the only one needed to
transform the nucleus-centered system to the laboratory-fixed system. This
approximation is adequate as long as the mean lifetimes of the decaying
states are in the subnanosecond range. For the cases in which longer-lived
states are of interest GOSIA provides an optional first-order treatment to
correct for the geometric displacement. To treat this effect rigorously, one
has to take into account both the change of the angles of the 7 detectoré,
as seen by the decaying nucleus, and the change of the solid angles
subtended by the detectors. For a given direction of the recoil the observed

yield of the decay of a state having the decay constant A can be written as:

@
Y = X [ exp(-At)S(t)Y(t)dt 3.17
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where S(t) denotes the time dependence of the solid angle factor, while Y(t)
stands for the time dependence of the "point" angular distribution. To the

lowest order the product S(t)Y(t) is expressed as:

S(6)Y(t) M Y(0) + pt | 3.18

where p stands for the time derivative of this product taken at t=0 ( note
that S(0)=1, thus S(0)Y(0) = Y(0) ). Inserting 3.18 into 3.17 and using the
displacement distance, s, as an independent variable instead of time we

finally obtain for mean lifetime T:

Y=Y(0) + vrp 3.19

where p is calculated numerically wusing a second set of yields evaluated

in a point shifted by s in the recoil direction, i.e.

_ S(s)Y¥(s) - Y(0)
P = s

3.20

where S(s), assuming that the the displacement is small compared to the
distance to the detector, Ty is calculated as:

i 2

0
- -2 : 3.21
(ro- s) _

S(s) =

The displacement correction requires the 7 yields to be calculated twice for
each evaluation, thus should be requested only when necessary to avoid

slowing down the execution.

-60-



III.4 INTEGRATION OVER THE PROJECTILE SCATTERING ANGLE AND THE ENERGY LOSS
IN A TARGET - CORRECTION OF EXPERIMENTAL v YIELDS

An exact reproductioa of the experimentally observed 7 yields requires the
integration over a finite scattering»angle range and over the range of
bombarding energies resulting from the projectile energy loss in a target.
The vy-decay formalism presented in Section ITI.3 has so far assumed that the
projectile scattering angle, 9?' and the bombarding energy, Eb’ are constant
for a given experiment. Using the definition of the "pointf yields (3.16)
the integrated yields, Yi(I+If), are given by:

Y, (121

qE

min dx p,min

dé 3.22
£) P _

Note that both the Rutherford cross section and the solid angle factor,
sind o) aTe already included in the definition of the "point" yields, as well
as 1ntegratlon over the detected partlcle ¢ angle.

The electronic stopping powers, dE/dx, in units of MeV/(mg/cm )
are defined by an user-specified table assuming the common energy meshpoints
for all experiments. The actual values of the stopping powers are obtained
using the Lagrange interpolation. The double integral is then evaluated
numerically using the discrete Simpson rule. GOSIA performs the integration
in two separate steps - first, the full Coulomb excitation coupled-channel
calculation is done at each of the user-speciified (GP,E) meshpoints to
evaluate the Tpoint" 7-yields, next, the actual numerical integration is
performed accérding to the user-defined stepsizes in both dimensions. The

"point" yields at the (9 ,E) points as required by the fixed stepsizes are
evaluated from the meshp01nt values using the logarithmic scale Lagranglan

interpolation. The 9P~E nesh is limited to a maximum of 11x1l points, while
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up to. 100 steps in each dimension can be defined for the integration.
Subdivision of the calculated mesh improves the accuracy of integration,
since Lagrangian interpolation provides the information of the order
dependent on the number of meshpoints, while Simpson method is a fixed
second-order algorithm. In addition, in cases for which the ¢ (6 )
dependence is complicated, as for the large parallel-plate detectors where
kinematical and mechanical constraints may create such shapes, the user may
optionally choose to input this dependence at the subdivision meshpoints.
The interpolation is then performed between the values divided by ¢ ranges
to assure continuity, then the user-given dependence is used to estlmate the
yields at the subdivision meshpoints.

The calculation of yields at the meshpoints requires the full
coupled-channel Coulomb excitation calculation, thus is time-consuming.
Consequently, one should only specify a minimum number of meshpoints needed
to achieve a reasonable accuracy.

The integrated yields are calculated in units of mb/srad times
the target thickness ( mg/cm ) which for the thick targets should be

. assumed to be the projectile range in the target.

The. integration module of GOSIA is almost exclusively used in
conjunction with the correction module, invoked by the 0P,CORR command
(IV.4), used to transform the actual experimentally observed yields to the
ones to which the subsequent fit of “the matrix elements will be made. This
operation is done to avoid the time-consuming integration while fitting the
matrix elements and is treated as an external level of iteration. An effect
of the finite scattering angle and bombarding energy ranges as compared to
the "point" values of the yields is not explicitly dependent on the matrix
elements, thus the fit can be done to the "point” values and then the
integration/correction procedure can be repeated and the fit refined until
the convergence is achieved. Usually no more than two integration/correction
steps are necessary to obtain the final solution, even in case of the
experiments performed without the particle-y coincidences, covering the full
particle solid angle. The correction module of GOSIA uses both the
integréted yields and the "point® vields calculated at the mean scattering

angle and bombarding energy, as defined in the EXPT (IV.8) input, to
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transform the actual experimental yields according to:

a YS (I+I,) = Y (I+I,) T 3.23
‘ exp £ exp f Yi(I*If)

é ' where the supersript "c! stands for the "corrected® value. To offset the

’ numerical factor resulting from the energy-loss integration the lowermost

yield observed in a q-detector labeled as #1 for the first experiment

%ﬁ defined in the EXPT input is renormalized in such a way that the corrected

} and actually observed yield are equal. This can be done because the -

knowledge of the absolute cross-section is not required by GOSIA, therefore,

no matter how the relative cross-sections for the various experiments are

defined, there is always at least one arbitrary normalization factor for the

whole set of experiments. This normalization factor is being fitted by GOSIA

together with the matrix elements, as dicussed in the following section

(fII.S)° The renormalization procedure results in the %corrected’ yields

béing as close as possible to the original values if the same target has

been used for the whole set of the experiments analyzed, thus the energy-

loss factor in the integration procedure is similar for the whole set of the

o experiments. One shold be, however, aware of the fact, that the correction

‘ factors may differ significantly for different experiments, thus the

corrected yields, normalized to a user-specified transition, always given in

the GOSTA output, should be used to confirm that the result is reasonable

rather than absolute values.
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IIT.5 MINIMIZATION

The minimization, i.e. fitting the matrix elements to the exper1mnutal dat

by finding a minimum of the least- -squares statistic is the most time-
consuming stage of the Coulomb excitation analysis. A simultaneous fit of a
large number of unknown parameters (matrix elements) having in general a
very different influence on the data is a complex task, which, to whatever
extent algorithmized, still can be slowed down or speeded up dependent on
the way it is performed. GOSIA allows much freedom for the user to define a
preferred strategy of the minimization. A proper use of the steering
parameters of the minimization procedure can significantly 1mprove the
efficiency of fitting dependent on the case analyzed - in short, it still
takes a physicist to get the results!. The follow1ng overview of the fitting
methods used by GOSIA is intended to provide some ideas about how to use

them in the most efficient way.

IIT.5.1 DEFINITION OF THE LEAST-SQUARES STATISTIC

A set of the matrix elements best reproducing the experimental data is found
by requesting the minimum of the least-squares statistic, S(M). The matrix
elements will be treated as a vector ordered according to the user-defined
sequence. The statistic S is in fact an usual Xz-type function, except of
the normalization to the number of data points rather than the number of
degrees of freedom which cannot be defined due to a very different
sensitivity of the excitation/deexcitation process to various matrix
elements, as discussed in more detail in Section III.6. The statistic §,
called CHISQ in the output from GOSIA, is explicitly given by:
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N L, S

s@ =3 (s, +8; + [ ws,) _ 3.24
1

where N is the total number of data points ( including experimental yields,
branching ratios, lifetimes, mixing ratios and known E2 matrix elements )
and Sy; S1 and Si are the components resulting from. various subsets of the
data, as defined below. Symbol w stands for the weight ascribed to a given
subset of data. "

The contribution to the total S function from the measured 7-yields

following the Coulomb excitation, Sy, is defined as:

2
s,= [ wq [ (© 1 Y1) [ai 3.25
; Tetd k(@I Teld <

where the summations extend over all experiments (Ie), 7—detectors' (Id)

and experiment- and detector-dependent observed 9-yields, indexed by k.

 The weights ascribed to the various subsets of data (wI I ) can be choosen

independently for each experiment and Yy-detector, faciligaging the handling
of data during the minimization ( particurarly, some subsets can be excluded
by using a zero weight without modifying the input data ). Superscript *"c°
denotes calculated yields, while superscript %e stands for experimental
data, with Ty being the experimental errors. Coefficients CI 1. are the

normalization factors, comnecting calculated and experimental ey‘j%elds (see

III'S'z)'The next term of 3.24, Sl’ is an "observation limit® term, intended
to prevent the minimization procedure from finding physically unreasonable
solutions producing the 7 transitions which should be, but have not been.
observed. We introduce an experiment and detector dependent observation
upper limit, u(Ia,Id), being a ratio of the lowest observable intemsity to
that of the user-specified normalization transition (see IV.29). 5, is

defined as:

Y?(Ie,ld) 9 o
8, =) (——— - u(@_,I))%/u(T,,I,) 3.26
1 - c e’d e’"d
i Yn(Ie’Id)'
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the summation extending over the calculated 7 transitions not defined as
experimentally observed and covering the whole set of the experiments and -
detectors defined, provided that the upper limit has been exceeded for a
given transition. The terms added to Sl are not counted as data points, thus
the normalization factor N is not increased to avoid the situation in which
the fit could be improved by creating the unreasonable transition
intensities at the expense of the normalization factor.

The remaining terms of 3.24 account for the spectroscopic data
available, namely the branching ratios, the mean lifetimes, the E2/M1 mixing

ratios and the known E2 matrix elements. Each Si term can be written as:

c e 2,2
Si = E.(dn.—d n.) /Jn. 3.27
i i 1 i

where the summation extends over all the spectroscopic data included in the
input to GOSIA, d and ¢ being the data points and their errors,
respectively. In case of the known E2 matrix elements the absolute values of
the transitional matrix elements are used (since usually only the B(E2)
values are known), while the diagonal matrix elements are taken including
the sign. The user~de£ined weigths, w., common for a given group of data,
once again provide the easy way of manipulating the spectroscopic
information according to the current needs without modifying the input.

‘ The least-squares statistic S is used to determine a set of the
matrix elements fitted to the experimental data as well as to ascribe the
errors of the fitted matrix elements, which are defined by the shape of the

S hypersurface in the space of the matrix elements (see Section III.6).
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I1T.5.2. NORMALIZATION CONSTANTS

To relate the calculated and experimental yields it is necessary to
introduce the normalization constaﬁts; treated as an additional set of

parameters (we assume that the experiments are conducted without the total

" flux measurement, which would provide the required normalization). An

alternate approach would be to fit the yields normalized to the intensity of
a specified transition. Such an approach, however, has severe drawbacks,
namely the increased uncertainties to be ascribed to the data, elimination
of one data point for each 7 detector and, last but not least, a danger of
obtaining a wrong result if, for some reason, the transition choosen for the
normalization was. incorrect (being, for example, an uresolved doublet with
an unknown component). A number of the unknown normalization constants can
be considerably reduced by using the fixed relative 7 detector eificiencies,
known, after being corrected for the 7-eﬁergy dependence, from the intensity
calibration. This reduces the number of fitted normalization constants to
one per experiment, instead of one per 7 detector. A further reduction is
possible if a set of experiments resulted from dividing the data acquired
during a single physical rum into the scattering angle slices, as in case of
the experiments conducted using the poéition—sensitive particle detectors.
By monitoring the singles (i.e. the events for which the detection of the 7-
ray is not required) one obtains the relative normalization for various
scattering angle slices, which includes the Rutherford cross section, the
solid angle factor and the particle detector efficiency. GOSIA provides an
option to fcouple? such sets of experiments by including the relative
normalization of various experiments in the relative normalization of the 7
detectors. The relative normalization between the experiments should be
given as the ratio of singles divided by the mean particle ¢ and & ranges
for an appropriate slice. As an example, let us comsider a fphysical®
experiment, conducted using the position-sensitive particle detector and

three 7 detectors. The full range of the scattering angle was logically
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divided into two slices, subtending the mean rangesA(AGI,A¢l) and (ACQ,A¢2),
respectively. Assuming that monitoring the singles yielded N1 events for
"logical® experiment 1 and N3 events for "logical® experiment 2 one can find

the relative normalization of experiment 2 with respect to experiment 1 as:

N, 44,48,
C(2:1) = ﬁz—zagzggf ' 3.28

Assuming the intensities of a calibration peak in three 7 detectors used

were Il, I2 and Ia’ respectively, one can finally specify the relative

normalization of these detectors for both coupled experiments as:

Il’Ia’Ia exp. 1
C(2:1)11,0(2:1)12,0(2:1)I3 exp. 2

Note that all six values can be arbitrarily rescaled, because‘of the
remaining single absolute normalization factor to be fitted by the code. For
example all six can be divided by I1 to have uﬁity for the first 7 detector
in experiment 1, the remaining values being then relative to this detector.
Finally, GOSIA provides also a possibility of treating all the 7 detectors
as independent, in which case the user-specified normalization comstants
become redundant, since the fit is done to each 7 detector independently.

The fitted absolute normalization constanst Are found by
requesting that:

£ (00, YF - ) /0% = nin . 3.29

-where the summation extends over all yields belonging to the subsets of data

coupled by the relative normalization constants, Ck. From 3.29 results:

e, 2
E C Y Y /0n
C =

3.30
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The procedure of finding the normalization consiants for all the coupled

subsets of data is repeated in GOSIA each time the S function is evaluated,

which means that the changes in normalization constants are included on the
= same basis as the changes of the matrix elements while searching for the

minimum of S and the errors of resulting matrix elements.

ity

-69-



ITT.5.3. INTERNAL CORRECTION COEFFICIENTS

Replacing the coupled-channel Coulomb excitation calculation by the
semianalytic approximation (see Chapter II and Section III.2) makes possible
to speed up the calculations so that the fitting of the matrix eleéements
becomes feasible. Both the minimization procedure and the error evaluation
procedure use the approximate excitation calculation mode. To improve the
accuracy of this approximation (involving on the excitation side the
replacement of the coupled-channel calculation by the fast approximation as
well as simultaneous truncation of the number of magnetic substates taken
into account and, on the deexcitation side, neglect of the time-consuming
relativistic coordinate system transformation) the internal correction
factors, correcting the effect of the approximations made, are introduced

according to:

Yi(full)
¢ =T o T 3.31
Yk(appr.)

The correction factors Cp s calculated and stored for all experimentally
observed 7 transitions, multiply the approximate values of the 7 yields. A
nmultiplicative correction has been chosen to assure that the correction
factors remain relatively constant (i.e. independent of the matrix elements)
in the vicinity of a set of matrix elements used to evaluate them. As could
be expected, the discrepancy between full and aproximate calculations is
most prominent for the uppermost levels, due to the error propagatioﬁ. The
excitation probability of the uppermost levels, however, depends mostly on a
single product of the squares of matrix elements connecting these levels to
the ground state. It is easily seen that in such a case the correction
factors will not depend on the actual values of the matrix elements, no
matter how much they differ from unity.

The internal correction' factors translate the 7 yields resulting
frbm the approximate calculation to the ones resulting from the full
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calculation for a fixed set of the matrix elements. However, since the
dependence of the correction factors on matrix elements is weak, it can be
assumed that the correction is valid locally in the neighbourhood of the
point of origin, understood as a set of matrix elements used to evaluate the
correction factors. The correction factors should be refreshed in course of
minimization dependent of how much the current set of matrix elements has
éhanged compared to the point of origin. To decide when to recalculate the
internal correction factors GOSIA uses a S-function decrease criteriom, i.e.
the correction factors are refreshed every time the value of S drops by an
user-specified factor compared to its value at which the last recalculation
tock place. This allows to spare the time-consuming recalculations of the
correction factors while still far from minimum (by requesting the
recalculation only when the value of S dropped significantly) and to
gradually increase the accuracy by changing the S-drop criteriom while
approaching the final solution.

] The internal correction factors are not evaluated for the
unobsérved 7 transitions, thus it it possible that, if the cumulative error
due to the approximations used is significant, some of the calculated

unobserved transitions may exceed the upper limits given by the user,

contributing to the least-squares statistic S. GOSIA issues a warning

pointing out to all the 7 transitions (resulting from the approximate
calculation) exceeding upper limits. Comparing the listed transitions with
the comparison of the calculated and experimental yields, by default
following the completion of the minimization and obtained using the full
calculation, one can detect the transitions being significantly too strong
due to the deficiency of the approximation used. It is then recommended to
include such transitions as experimentally observed, with the large errors

ascribed, to force the code to include them in the correction factors table.
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IIT.5.4. STEEPEST DESCENT MINIMIZATION

A choice of the minimization strategy is always dependent on a specific
characteristic of a function to be minimized. While it is generally possible
to tailor the strategy in-a cise the function to be minimized can be
expressed analytically, the multidimensional search for a minimum of a
function which can only be evaluated numerically - which is a case of the
multiple Coulomb excitation analysis - cannot be fully algorithmized to
provide an universal optimum strategy, thT3386minimization procedure should
leave much room for the user intervention, based on both intuition and
understanding of the processes being analyzed. The most commonly used
minimization strategies - simplex, variable metric and gradient algorithas-
perform better or worse dependent on the case. In our case the simplex-type
methods are not useable, because the exact calculation is replaced by the
fast approximation. The correction factors, valid only locally, are
introduced, thus the construction of a simplex involving the points far from
the matrix elements set used for evaluating the correction factors is not
reliable. In turn, the variable metric method, based on an exact solution of
the second-order approximation to the S function is efficient only if the
second-order approximation is justified within a wide range of the

parameters, which is usually not true for the Coulomb excitation analysis

(in addition, the variable metric method requires that a second derivative

matrix is calculated and stored, thus extending both the computing time and
the central memory requirements to perform a single step of minimization
‘without much improvement compared to the steepest descent method, dicussed
below if the function is far from quadratic). Considering the above, the
gradient methods are the only ones suitable for fitting the lérge sets of
matrix elements to the Coulomb excitation data. GOSIA offers two gradient-
type methods which can be choosen by the user dependent on the case analyzed
- 2 simple steepest descent minimization, outlined below, and a

gradient+derivative method, described in Section III.5.5.
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The steepest descent method is one of the most commonly used
nethods of minimization based on the local behaviour of the function to be
minimized. Assuming local validity of a first-order Taylor expansion around

the central set of arguments, io’ any function can be approximated as:

1®)

f(io) + VOAE o 3.32

with Vo being a gradiénﬁ, i.e. a vector of derivatives calculated at point

§0, explictly defined as:

vO,i = %;%i , 3.33
The steepest descent method is based on a simple observation that the local
decrease of the function to be minimized, £, is maximized if the change of
the vector of the parameters, Ax, is antiparallel to the gradient. As long
as a minimized function is not aultivalued and does not have saddle points a

simple iteration scheme:

x +x - h¥ 3.34

provides a safe and efficient way to minimize it using the gradient
evaluated at each sﬁccesive point x. The stepsize, h, must be found by
performing one-dimensional minimization along the direction antiparallel to
the gradient. Assuming the locally quadratic behaviour of the function f,

the value of h is expressed by:

9 |
h = — 3.35
V39 |

where J is the matrix of second derivatives of f with respect to X, i.e.:

2
9 £ 3.36

Jix = 3x.0x,
b N K

The estimation of the stepsize according to 3.36 is, however, out of
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question, since the second-derivative matrix is never calculated in GOSIA
and, moreover, the assumption of local quadraticity 'is in general not valid.
Instead, an iterative procedure is used to find a minimum along the
direction defined by the gradient, based on a well known Newton-Raphson
algorithm of finding the zeros of the arbitrary functions. A search for a
minimum of a function is equivalent to finding a zero of its first
derivative with respect to the stepsize h, according to the second-order

iterative scheme: -

O’IO’
[ (o

h+h- 3.37

2

Q

i

[ 3]

dh

which can be repeated until the requested convergence is achieved, unless
the second derivative of f with respect to h is negative, which implies
that the quadratic approximation cannot be applied even locally. In such a
case, the minimized function is sampled stepwise until the Newton-Raphon
method becomes applicable when close enough to the minimum along the
direction of the gradient. One-dimensional minimization is stopped when the
absolute value of the difference between two subsequent vectors of
parameters is less than the user-specified convergence criterion.

The gradients in GOSIA are evaluated numerically, using the
forward-difference formula or, optionally, the forward-backward

approximation. While the forward difference formula

af f(xl’XQ""xi+h"°') - f(xl,x2,...xi,...)
= n 3.38

axi -
requires only one calculation of the minimized function per parameter
in addition to the evaluation of the central value f(xl,xz,...xn), the
forward-backward formula

af f(xl’XB""xi+h""> - f(xl,xz,...xi—h,...)
B "9h 3.39

Ox.
i

requires two calculations of the minimized function per parameter. The
forward-backward formula should then only be requested in the vicinity of
the minimum, where the accuracy of the numerical calculations start to.play

an important role.
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IIT.5.5. GRADIENT+DERIVATIVE MINIMIZATION

‘The steepest descent minimization, efficient if a minimized function is

smooth in the space of parameters, shows considerable drawbacks when dealing
with fuctions having sharp "valleys® superimposed on the smooth surfaces.
Such valleys are created by the strong correlation of two or more
parameters. In case of the Coulomb excitation analysis, the valleys are
introduced mainly by including the accurate spectroscopic data, specially
the braching ratios, which fix the ratio of two transitional matrix
elements. Note, that even if the branching ratio is not introduced as an
additional data point, the valley will still be present in the yield
component of the least-squares statistic S if both transitions éepopulating
a given state were observed. To demonstrate this deficiency oﬁ the simple
steepest descent method, let us consider a model situation in ﬁhich a two-
parameter function f(x,y)=x3+(x-y)2 is minimized, starting from a point x=y.
The term (x-—y)2 creates a diagonal valley leading to the minimum point
(0,0). Using the analytic gradient and the stepsize given by 3.35, it is
easily seen that the minimization using the steepest descent method will

follow a path shown below:

gé%

v
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instead of following the diagonal. To facilitate handling c¢f the two-
dimensional valleys, introduced by the spectroscopic data, GOSIA offers a
gradient+derivative method; designed to force the minimization procedure to
follow the two-dimensional valleys, at the sage time introducing the second-
order information without calculating the second order matrix (3.36), thus
speeding up the minimization even if the surface of minimized function is

smooth. Gemerally, to minimize a locally parabolic function:

E(X) = £(%) + UA% + 3% 7 o 3.40

one can look for a best direction of a search expressed as a linear

combination of an arbitrary number of vectors, P,, not necessarily
b8

orthogonal, but only linearly independent. This is equivalent to requesting
that:

f(xo- g aiPi) = min 3.41
with respect to the coefficients a,. Merging 3.40 and 3.41 we get:

- | . 1 . .
£(x,) - [ 0, (P) + 5[ 20,73 P, = nin 3.42
, 1 1j
which can be written in the vector form as:

f(io) ~af+5aRa=min 3.43

B fis

with a set of coefficients a, treated as a vector @ and:

g, = TP

i

B 3.44
R.. =P, JP,
ij i ]

The matrix R is symmetric following the symmetry of J, thus the solution for
the vector @ is given by:

=T~




a=R "3 3.45

To construct the gradient+derivative minimization algorithm we use two
directions - the gradient, defining a direction of steepest descent, and a
derivative of the gradient with respect to the displacement along its

direction:

¥

V(% 87,) - 9y

D =1lim T

h+0

3.46

It is easily checked that as long as the quadratic approximation 3.40 is
valid: |

p=Jv . 3.47

Using the identity resultiag from the symmetry of J:

2 2
Vo J Vo = (JVO) 3.48

‘we finally get:

3.498
B=(1,%,90)

where all terms, except Rza’ are known. By sampling the minimized function
we can express this missing term as:
5 _ 2

JD =55 f(io + hD) - f(io) - hVoﬁ ] 3.50

(=]
=

The coefficients a and 2, resulting from the solution of 3.45, can be

arbitrarily rescaled, since we are only interested in the direction of
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senrch, the stepsize being found by the one-dimensional minimization
procedure outlined in previous section. A most convenient representation of

a direction of search V, renormalized to avoid numerical overflows, is given

by:

)2

V<= ( .0 Y. - 1 ¢ ( voﬁ
AAE TR TR T AR T

- 13D 3.51

Although primarily designed to accomodate the narrow valleys superimposed on
the least-squares statistic by the spectroscopic data, the
gradient+derivative method usually gives much better results than the simple
steepest descent, providing faster fitting despite the necessity of
calculating two sets of derivatives per step of minimization. Since two
linearly independent vectors define a two-dimensional space, the
gradient+derivative method is very suitable to deal with the decoupled
correlated pairs of the matrix elements (note that, as could be expected,
the solution of the model case discussed above is found in a single step of

minimization).
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III.5.6 QUADRATIZATION OF THE S STATISTIC BY REDEFINION OF VARIABLES

The minimizétion methods outlined in previous subsections are built on the
assumption that the minimized function can be locally described by the first
or second order approximation, therefore their efficiency is strongly
dependent on the extent to which this assumption is justified. Generally,
the Coulomb excitation data analysis problem cannot be parametrized in such
a way that the least-squares statistic S (3.24) becomes a strictly quadratic
function. Some hints as how to improve the efficiency of minimization come,
however, from considering the extreme cases, most important of which is a
perturbation-type process, characterized by direct dependence of the
excitation probabilities on the product of squares of the matrix elements
directly connecting a given level to the ground state. Assuming in addition
a cascade-like decay with negligible feeding from above and negligible
branching, we expect the y-decay intensities to be proportional to the
product of squares of the level-dependent subsets of transitional matrix
elements, thus the 7-yields part of the S statistic can be expressed as a
quadratic function of the logarithms of 7 yields versus the logarithms of
the matrix elements (note that he same holds for the spectroscopic data,
although the signs of the E2/M1 mixing ratios and known E2 matrix elements
are to be disregarded). While expressing the dependent variables in
logarithmic scale is straightforward, the same operation for the matrix
elements would mean enforcing the sign identical to that of an initial
guess. To avoid this problem the logarithmic transformation of the matrix
elements is only taken in the first order of Taylor expansion, resulting in
the actual minimization still performed in the matrix elements épace with
the direction of search being modified. To derive such an approach, let us
consider the modification of a single matrix element, M, having an initial
value of Mo, during a single step of minimization. A transformation to the
logarithmic scale yields the tranformed derivative of a minimized fumction f

with respect to M:
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3f df
sy = Mol 5 3.52

vhich, using the steepest descent method, gives a new value of M according
to:

O)Ioa
= (2

Laj¥| = 1afMg| - BIM, |22 | 3.53

Expanding ln|M| into Taylor series around Mo and retaining only the first

order term we finally get:

298

M = MO - hMO N 3.54

which defines the modified direction of search. When the gradient+
derivative method is used, both vectors must be combined according to 3.52
and multiplied by |Mo| to obtain the transformed direction of search.

A scale change of the matrix elements is, in principle, mainly
justified if the logarithmic scale is simultaneously used for the dependent
variables (7 yields etc.). However, even if the dependent variables are not
transformed, the change of scale for the matrix elements, resulting in the
relative, rather than absolute, variations , can improve the efficiency of
the minimization. A typical situation in which fitting the relative changes
is efficient is the one when a strong dependence on a small matrix element
determines the stepsize, h, common for a whole set, thus inhibiting the
modification of much larger matrix elements if the absolute changes are
used. Using the relative changes, however, one brings the sensitivity to all
matrix elements to a common range, thus improving the simultaneous fit.

The minimum of a logarithmically transformed S function does not,
in general, coincide with the minimum of the original least-squares
statistics. The minimization procedure uses only the direction of search
resulting from the transformation of the dependent variables, if requested,
still monitoring the original S statistics. The tranformation of the
dependent variables should be therefore switched off when the current

solution is close to the minimum of S.
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III.5.7 SELECTION OF PARAMETERS FOR MINIMIZATION

The gradieﬁt—type minimization, as used in GOSIA, tends to vary the
parameters according to their influence on the least-squares statistic S. It
is easily understandable, since the most efficient decrease of S is
primarily obtained by varying the parameters displaying the strongest
influence, measured by the current magnitude of the respective components of
a gradient. With the stepsize, h, being commoﬁ for the whole set of
parameters, it is clear that unless the strong dependences are already
fitted (which results in reduction of their derivatives) the weak
dependences will be practically not activated. This is a serious concern in
the Coulomb excitation analysis, since the semsitivity of the S:function to
different matrix elements may vary by orders of magnitude. The éttempt to
perforn the minimization using a full set of the matrix elements usually
means that most of them will came into play only after some number of steps
of minimization but all the necessary derivatives are to be calculated from
a very beginning, enormously increasing the time spent on computation
without any significant improvement compared to the much faster minimization
performed initially for only a subset of matrix elements. To speed up the
process of fitting, GOSIA offers a wide range of both user-defined and
automatic ways of reducing a number of parameters according to the current
status of the minimization. The user may first decide to fix some of the
matrix elements included in the initial setup, but found to have no
influence on the processes analyzed. Secondly, the user may specify a subset

of the matrix elements to be varied during a current run overriding the

'selection made initially. The selection of the free variables for a current

run can be also made by the minimization procedure itself, based on the
magnitudes of the absolute values of the gradient components evaluated
during a first step of the minimization compared to the user-specified
1imit. The direction of the search vector, being either a gradient or a

gradient+derivative vector, is always normalized to unity, allowing the user
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to define the limit below which the matrix elements will be locked for a
current run if the absolute values of the respective derivatives are below
this limit. In addition, some precautions are taken against purely numerical
effects, most notably againt the situation in which the numerical deficiency
in evaluating the derivative causes a spurious résult. The minimization
procedure in GOSIA stops if either of three user-defined conditions is
fulfilled: first, the value of the S function has dropped below the user-
specified limit; second, the user-specified number of steps has been
exceeded; third, the user-given convergence limit has been achieved, i.e.
the difference between two subsequent set of matrix elements (taken as a
length of the difference vector) is less than this limit. First two
conditions fulfilled terminate a current run, while after the convergence
limit has been hit the minimization is resumed if it was specified to lock a
given number of the matrix elements influencing the S function to the
greatest extent to allow the weaker dependences to be fitted (the details of
the usage of the user-defined steering parameters are given in Chapter IV).
To further reduce the numerical deficiency, GOSIA monitors the directions of
two subsequent search vectors and fixes itself the matrix element having the
largest gradient component if two subsequent directions are almost parallel,
which usually signifies that the spurious result of the numerical
differentiation of S with respect to this matrix element inhibits the
fitting of the less pronounced dependences. A warning message is issued if
this action was taken.

An additional reduction of the free variables can be done by
coupling of the matrix elements, i.e. fixing the ratios of a number of them
relative to one "master® matrix element. This feature is useful if the
experimental data available do not allow for a fully model-independent
analysis, therefore some model assumptions have to be introduced to
overdetermine the problem being investigated. The "coupled® matrix elements
will retain their ratios, as defined by the initial setup during the
fitting, a whole "coupled® set treated as a single variable.

Finally, GOSIA requires that the matrix elements are varied only
within the user~specified limits, reflecting the physically acceptable
ranges. The matrix elements are not allowed to exceed those limits, neither

during the minimization nor the error calculation.
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II1.5.8 SENSITIVITY MAPS

As a byprodﬁct of the minimization GOSIA provides optionally the information
concerning the influence of the matrix elements on both the 7 yields and
excitation probabilities. The compilation of those maps is, however, time-
consuming and should be requested only when necessary. The yield senmsitivity
parameters, azk, define the sensitivity of the calculated 7 yield k with
respect to the matrix element 1 as:

alnYk M.aYk

Qa = = 2
ki~ 8In[M,| ~ Y, OM,
1 1

3.55

The excitation probability sensitivity parameters , aii, are expressed
similarly, the yields being replaced by the excitation probabilities. The
code allows six most pronounced dependences to be selected for each
experimentally observed yield for the printout, while a number of the matrix
elements for which the most important probability sensitivity parameters are
printed out can be selected by the user.

By definition, the sensitivity parameters provide (to the first
order) a relationship between the relative change of the excitation
probabilities (or the calculated 7 yields) and the relative change of the

matrix elements according to:

i .
—2 Ry gf, === 3.58

thus supplying the locally valid information on the dependence of
experimental data on matrix elements. An identical relationship holds for
the yield sensitivity parameters, although the code only calculates them
only for the 7 detector labeled as #1 for each experiment, thus the angular
distribution of the 7 rays, affected for example by the mixing ratios, is

not fully accounted for. It is suggested that a 7 detector yielding the most
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complete and accurate yields should be defined as a first one in the
description of an experiment to assure that the yield sensitivity maps are
calculated for all the yields observed.

The sensitivity parameters are not strongly dependent on the
actual matrix elements, therefore the sensitivity maps can be treated as an
indication of the features of the excitation/deexcitation process at any
stage of minimization. As an extreme case it should be noted that if the
lowest-order perturbation theory applies, i.e. the excitation probability of
a given state is proportionmal to the product of the squares of matrix
elements connecting this state with the ground state, then the probability
sensitivity parameter will equal 2 for all such matrix elements and will
vanish for all others, no matter what the actual values are. The same holds
for the yield sensitivity parameters, provided that the 7 decay follows a
simple cascade with no branching (the feeding from above can be neglected as
a consequence of assuming the applicability of the lowest-order perturbation
approach) . |

The sensitivity maps provide an useful information which can be
used during fitting to define the current sets of correlated matrix elements
to be varied, to check to what extent the different sets of experimental
data are independent and, finally, to ascertain which matrix elements
included in the initial setup have significant influence on the processes
analyzed. The data obtained during the compilation of the yield sensitivity
map are also used to generate the correlation matrix, selecting the subsets
of matrix elements being strongly correlated for the error estimation (see
Section III.8). It should be noted, however, that the compilatiom of the
sensitivity maps is time-consuming, thus it should be requested only
periodically when needed. The sensitivity maps are also helpful when
planning an experiment, in which case a set of simulated 7 yields can be
used as experimental data for a dummy minimization run (simulated yields can
be created by GUSIA using 0P,POIN - see IV.18). A comparison of the
sensitivity parameters for different (existing or planned) experiments give
an indication to what extent the additional sets of data provide the

qualitatively new information.
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III.6. ESTIMATION OF ERRORS OF THE FITTED MATRIX ELEMENTS

The most cémmonly used methods of estimating the errors of the fitted
parameters (in our case the matrix elements) resulting from the least-
squares minimization are derived using}tﬁe_assumptions which not necessarily. .
apply to the Coulomb excitation analysis; Usually, the errors of the fitted
parameters are evaluated either using the curvature matrix or by requesting
an increase of the least-squares statistic dependent on the number of
degrees of freedom and the value of this statistic at the minimum. An
approach based on the second-order approximation is not applicable because
this approximation is in general not valid even in the vicinity of the
fitted set of matrix elements, not to mention the problemé resuiﬁing from
the so-called "nuissance parameters”, i.e. the parameters which can be
formally introduced, but have no influence on the observed processes. The
inclusion of such parameters prohibits a straightforward inversion of the
second-derivative matrix. Moreover, the curvature matrix approximation
assumes that the fit is perfect, i.e. the gradient at the solution point
vanishes, thus only the second-order term describes the behavior of the
least-squares statistic. Practically, however, we have to assume that a
fitting procedure must be stopped at some point even though a number of the
matrix elements having a weak influence on the Coulomb excitation process is
far from their best values. This is not important from the point of view of
extracting the information contained in the experimental data but can
considerably disturb the error estimation of the significant dependences
when the second-order approximation is used. The unavoidable presence of the
nuisance parameters also prohibits the error estimation procedures based on
the assumption that the least-squares statistic should obey the xz
distribution with a given number of degrees of freedom. It should be noted
that the concept of the number of degrees of freedom is implicitly based on
the assumption that all the parameters are of about equal significance,

which is obviously not true in our case since the sensitivity of the
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observed 7 yields to the various matrix elements differs by the orders of
magnitude. It is clearly seen by noticing that to describe a given
experiment one can arbitrarily add any number of unobserved levels connected
by any any number of the matrix elements having no influence on either
Coulomb excitation or 7 deexcitation, thus arbitrarily changing the number
of parameters and, consequently, the number of degrees of freedom. Finally,
any procedure based on the number of degrees of freedom will result in
ascribing the errors of the Titted matrix elements according to the
subjective feeling what still is a valid parameter of the theory and what is
not. The error estimation formalism used in GOSTA, described in subsequent
sections, has been therefore derived without employing neither local
quadratic approximation nor the concept of the degrees of freedom to provide

a reliable (however in general non- analytlc) method of calculating the

errors of the fitted parameters.
III.6.1. DERIVATION OF THE ERROR ESTIMATION METHOD

Let us assume that a set of observables, Yk’ measured with known and fixed
experimental errors, g is used to determine the values of a set of
parameters, X, We also assume that the observables are related to the
parameters by an error-free functional dependence, i.e. that if the

experiments were error-free each experimental point Y could be exactly
reproduced as:

Yk o= fk(i) 3.57

where fk stands for the functional description of the k-th observed data
point using a given set of parameters, represented as a vector. However,
since we have to aééume the experimental uncerntainties, we can only
determine the parameters by requesting that the least- squares statistics
(as defined by 3.24) is minimized with respect to the set of parameters. In

other words, the assumption that a set of n parameters is sufficient to

t
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reproduce N experimental observables (N2n), is equivalent to assuming that
only a certain values of observed data forming a n-dimensional hypersurface
in the space of observables are allowed and the fact that the measured set
of observables does not correspond exactly to any set of parameters is only
due to the experimental errors. From this point of view the extraction of
the parametefs based on a set of observables reduces to determining which
point on a hypersurface of the "allowed® experimental values (referred to as

a "solution locus®) corresponds to the measured values. While the assignment

of the closest point on a solution locus defines a "best? set of parameters

(as shown below), the distribution of the probability that different points
belonging to the solution locus actually represent the set of observables
defines the errors ascribed to the parameters. It can be shown that both the
"best® set of the parameters and the errors of the parameters cam be found
examining the least-squares statistic if the "perfect theory® approach is
assumed. Such an approach, actually employed in GOSIA, is presented below.
To simplify the notationm it is convenient to introduce the

normalized observables, ¥y defined as:

k 3.58

and to assume that the functional dependence also includes the normalization

relative to the fixed experimental errors ¢ . Treating both the set of

k
normalized observables and the set of normalized functional dependences as
vectors, we can compactly define the unnormalized least-squares statistic,

3
X, as:

= E® -7 02 3.59
where we have used a(symbol Xz to distinguish the unnormalized statistic
from the normalized statistic S, as defined by Eq. 3.24. Assuming that the
normalized observables, y,» are independent and normally distributed (the
width of the distribution equal to unity, as a result of the normalization
to the known experimental errors) ome finds that the probability oi the

?

observed set ¥ is an experiment-distorted reflection of a "true® set y is
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proportional to:

PG) % exp(- 3 G -7)D 3.60

An assumption of the "perfect® theory allows only the "true® sets of
experimental data which can be described by the functional dependence f,

belonging to the solution locus. Therefore only the sets i' which can be

expressed as:

7= %) 3.61

are to be taken into account. Substituting 3.81 into 3.60 one gets:

PAR)) & exp(- 5 1) | 3.62

Note that in this "geometrical® picture xz has a meaning of the square of
the distance from the observed set of data to a point belonging to the
solution locus, thus the least-squares minimization is equivalent to finding
a point on the solution locus closest to the experimentally observed set of
data. Such a point has the highest probability of reflecting an error-free
measurement, as long as. the assumption of a perfect theory is in effect. Eq.
3.62 gives the probability that the observed set of data corresponds to a
given point on the solution locus per the element of volume of the solution
locus, thus the transition to a probability of a given set of parameters per

unit of volume in the parameter space requires that the density function,
given by:

- v
pE) = = 3.63
19%g- - rdxy

is used, with dV standing for the volume element of the solution locus as a

function of the parameters X, - The probability distribution in the parameter

space can be subsequently written as:

2§;§i2...dxu = C p(x) exp( - % &) 3.64
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with a normalization comstant C resulting from the condition that the
integral of the probability distribution over a whole space of parameters is
equal to unity. Eq. 3.64 defines the probability distribution of
simultaneous assignment of a whole set of parameters. Practically, however,
we are rather interested in ascribing the errors to the individual
para@eters, therefore we have to reconstruct the one-dimensional probability
distributions corresponding to the individual parameters. Such va -
distribution for parameter i, with no assumptions made as to the "truef

values of the remaining parameters, will be given by:

aP (x,) dP (%)

=]
dx, ey dx,. - dx_

dxldxz..,dxi_ldxi+1.,.dxn 3.65

the integration extending over all allowed values of the parameters except
of the parameter i. Using 3.65 the error bars of a given parameter can be
found by requesting that the probability that the ftrue® value of this
parameter (evaluated by integrating the distribution 3.65) is contained
within the error bars equals to an adopted confidence limit of 68.3%
corresponding to the standard deviation obtained using the Gaussian
distribution. Since neither the perfect minimum nor the symmetry of xz
around the minimum is assumed, it is reasonable to defime the upper and
lower error limits independently. This is explicitly given by requesting

that:

X3 +0x; 4P (x,)

< dxi dxi
n = .683 3.66
*; (m8%) 4p(x.)
e T
dx. i
x‘ l
l .

where 5xi stands for the upper error limit, while xi(max) denotes the
maximum allowed value of X, . A similar formula is used to determine the

lower error limit with the maximum allowed value of x. replaced by the
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mininum allowed value of this parameter.

Until now the derivation of the error estimation formalism has
rigorously followed the initial assumptions. The error estimation using 3.66
is, however, not practical when dealing with a multidimensional parameter
space and the non-analytic description of the functional dependence used to
relate the parameters to the observed data. First, it is technically
impossible to evaluate the density function, p(x), if the analytic
functional dependence is not khown, as in the case of the multiple Coulomb
excitation. It can be argued that if the parametrization of the processes
observed is reasonable, the density function should be only weakly dependent
on the actual set of parameters compared to the dependence of the [
functlon (otherwise, the parametrization would be unstable). Assuming that
the X exponent in 3.66 drops sharply in the vicinity of the error limit
while no drastic change of the density function takes place, onme can take
for granted that within a reasonable accuracy an effect of weighting the
Gaussian distribution with the density function can be safely neglected.
Second, it is easily seen that the reconstruction of the one-dimensional
probability distribution according to Eq. 3.65 is not feasible if the
analytic form of the functional dependence is not known. We are therefore
forced to adopt a "worst case" approach, i.e. to use an approximation
vielding the overestimated error bars but allowing a reduction of the
multidimensional problem to one-dimensional without performing the numerical
integration in multidimensional space. To construct such an épproach we
introduce a concept of a "maximum correlation curve® defined as a curve in
the parameter space for which an effect of varying a given parameter is to
the greatest extent balanced by the changes of the correlated parameters to
mininize an overall change of the y® function. Introducing the above

approximations the error criterion 3.66 can be rewritten as:

x.+0x.

N 1.2 -
[ exp(-5x"(x,)d1(x)

X.

xl(max) = ,683 3.67
f exP('*f;_fX (x;)d1(x)

X,
1
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where 1 stands for the "maximum correlation” path and the probability
distribution is treated as a function of the i-th parameter only, the
dependence on other correlated parameters being defined by the path of
integration, 1. This simplification results in overestimation of the error
bars, correéponding to the confidence limit of at least 68.3%.

The error estimation formalism, presented above, fits well the
needs of Coulomb.excitation aﬁalysis. It is not semsitive to the redundant
parameters, which will simply display no influence on xz statistic. It
allows to easily introduce physical limits of the matrix elements just by
normalizing the probability distribution to its integral between those
limits (note that in case of insignificant matrix elements this will yield
the errors of 88.3% of the full range - GOSIA issues a warning if the
integration is stopped on the limit before the criterion 3.67 was
fulfilled). Finally, neither the purely quadratic behaviour of xz nor the

perfect minimum are explicitly assumed.

-91-



ITI.6.2 NUMERICAL ESTIMATION OF ERRORS

The error estimation in GOSIA is performed in two separate steps. First, the
"diagonal® errors, i.e. the errors of individual matrix elements with all
the others kept fixed, are found. This part of error calculation is
relatively fast and thus has been separated from the #full®, or correlated,
error estimation. The calculation itself consists of a straightforward
numerical solution of 3.67, the fourth-order Runge-Kutta integration method
used to numerically evaluate the integrals involved. The probability
distribution is renormalized to its value at the central set of matrix
elements to avoid under- and overflows, i.e. AXB is used instead of xz. As
mentioned above, the diagonal error calculation is not very time-consuming,
therefore it can also be used to speed up the minimization provided that the
strong influences were already fitted. Running the diagonal errors, one can
detect the matrix elements being still far their best values judging from
the pronounced assymetries of the error bars. In addition, GOSIA notifies
the user every time a better value of the statistic S has been found. This
information can be used to "manually® predict a better solution without
performing a time-consuming minimization of the weak dependences. Alsoc, in
some cases, the improvement of xz found during the error calculation can be
so large that the Gaussian distribution associated with the error estimation
cannot be handled due to the machine-dependent overflow of the exponential
involved. GOSIA detects such situations using an user-defined capacity of
the computer, allowing to indicate which subsets of the matrix elements are
to be refitted to improve the minimum.

The diagonal error calculation is usually repeated a few times
until the minimum of the least-squares statistic S is found satisfctory from
a point of view of individual matrix elements. The following "full" error
calculation differs from the diagonal error calculation only by applying Eq.
3.87 along the predicted path of maximum correlation. Although, in general,

this path is a curve in a space of the parameters, we are forced, for
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practical reasons, to approximate it by a straight lipe. To make this
approximation as reliable as possible, the information resulting from the
diagonal error calculation is used by GOSIA to determine the way the
probability distribution is sampled. An estimate of the diagonal error for a
given matrix element is first used to evaluate aa appropriate stepsize for
the Runge—Kutta integration algorithm. Since the influence of a given matrix
element is not a priori known a common stepsize is used for the diagonal
error estimation. This approach is subsequently refined by adjusting the
stepsize for each matrix element individually during the full error
calculation based on the diagonal error range. It may, in some cases, cause
a slight decrease of the error range if there is no significant correlation
and the stepsize assumed for the diagonal error calculation was actually not
correct taken into account the sensitivity of the xa statistic to a given
matrix element. The diagonal error bars are also used to define how the
maximum correlation curve is approximated by the straight line in a space of
the parameters. This operation is perfomed by assuming that the matrix
element for which the correlated error is estimated is varied to the value
correéponding to its central value # an appropriate diagonal error and fixed
at this value, while the one-step gradient minimization of the remaining
matrix elements is done to find the correlation axis. The maximum
correlation direction is then defined as a vector difference of the
resulting set of the matrix elements and the central point. In this way, a
correlation curve is approximated at a range consistent with the order of
magnitude of the fimal error. It should be, however, noted that performing
the one-step gradient minimization to find the correlation axis is very
time-consuming if all the matrix elements are taken into account. Moreover,
since the gradient method will only affect the values of the matrix elements
strongly correlated with the one investigated, the calculation of the
derivatives with respect to all others is simply redundant and does not
vield any improvement in predicting the correlation axis. To speed up the
full error calculation GOSIA offers a mechanism of reducing the number of
natrix elements being taken into account by predicting the subsets of
mutually correlated matrix elements. This requires that at a final stage of

minimization the yield sensitivity map is compiled and the full set of the
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sensitivity parameters aii (3.85) is stored on a permanent file. A separate
program, SELECT, uses the map of the sensitivity parameters to predict the
correlation. Each two matrix elements are correlated if they affect the same

data points, thus, for each matrix element M the correlation with a matrix
element M can be measured by:

¢y = Z | a{iayli[ : 3.68
i

the summation extending over all observed 7 vields. The absolute values are
taken to prevent the neglect of the correlation due to coincidental
cancellation of the opposite sign terms. For each matrix element, indexed by
the row index 1, SELECT identifies those matrix elements M having the

values of i Breater then 10% of the maximum value of c. in thls row. As a

1k

result, SELECT produces a binary matrix whose elements are either 0, if no

strong correlation was predicted, or 1. The matrix elements explicitly

correlated by the spectroscopic data are assumed to be correlated by
definition. The correlation matrix is then used during the full error
calculation to fix the matrix elements for which the correlation was not
predicted when searching for the correlation axis.

GOSIA issues the messages if lower values of the S statistic have
been found. The set of the matrix elements producing an overall best value
of 8 is stored om a permanent file, which could be eventually used to
improve the minimization as a starting guess. However, it should be
remembered that the uncorrected fast approximation used during the error

estimation can be a source of inaccuracies, thus the small changes in the S
statistic can usually be disregarded.
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I7I.7 IDENTIFICATION OF ERRONEOUS DATA POINTS

Fitting a large set of parameters, as in case of the Coulomb excitation
analysis, one must be aware of a possible existence of the local minima,
which can cause the fitting procedure to be trapped in an erroneous
solution. While there is no general method of distinguishing a local minimum
from a global one some judgement is still possible based on the value of the
normalized least-squares statistic S and the comparison of experimental and
fitted data. A local minimum could be created artificially by including the
erroneous pieces of data, such as incorrectlf assigned 7 yields, or, even if
there were no mistakes in the data, could result from the local dependence
on the parameters. The information prdvided by GOSIA during the minimization
and error estimation is usually quite sufficient to determine whether the
solution is acceptable. To further facilitate the identification of the
local solutions GOSIA is equipped with a "troubleshooting® module, designed
to detect the inconsistencies within the data set. This module uses the
information obtained at a current stage of minimization concerning the
dependence of the observed 7 yields on matrix elements. Only the 7 yields
observed in the detectors labeled #1 for each experiment are used, as a
result of the convention that the 7 detector providing a most complete and
reliable set of data should be defined as a firsﬁ one. The troubleshooting
routine first calculates the normalized S statistic disregarding the other 7
detectors and the spectroscopic data, assuming the independent, code-
calculated normalization, thus overriding the user-specified normalization
constants. A large difference between a value of 8 calculated this way and
the value resulting from the minimization points out to either wrong
relative normalization or a problem with the reproduction of the q-ray
angular distribution, which may be due to the errors in assigning the
aﬁgular poéitions of the 7 detectors (the inconsistencies within the
spectroscopic data are easy to notice comparing the calculated and

experimental values). A next step is to select the experimental 7 yields
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data which locally inhibit the minimization with respect to the individu-l P

matrix elements. Keeping in mind the gradient method used fo:r the

minimization it is easily seen that a "perfectly consistent® set of data B
used to form a least-squares statistic, which can be shortly written in
form: . "
Xz ="Z aiz 3.89
i

is characterized by the fact, that all individual components of the |

derivative with respect to a given matrix element Mk

ad.
& .o Lo, == 3.70 o
aMk 7o amk

should be of the same sign, which means that the overall direction found to
improve the minimum with respect to this matrix element is the same as
resulting from the separate pieces of data. The inconsistent pieces of data
may, in turn, produce large terms of opposite sign, which consequently
causes a small value of the derivative due to cancellation. In such
situation a given matrix element will not be varied. As a measure of this

effect we introduce a parameter T defined for each matrix element Mk as:

aéi B
g | éi EE; :@?
r, = log 55 3.71 L

This parameter equals O if all the terms summed are of the same sign and B
becomes ‘large when the cancellation effect is dominant. The numerator of £
3.71 can be treated an an indication of the influence of a given matrix |
element M (the "strength of this matrix element) and is listed in the ks
output of the troubleshooting routine separately. The routine further
selects the data points having the largest positive and negative T

contributions to the derivative for all the matrix elements for which
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calculated T, exceeds an user-specified limit. This information may be
helpful to pinroint the erroneous data points, e.g. the misassigned 7
transitions. Sometimes, mostly for weakly overdetermined cases, the local
minima and the saddle points may occur even if all data are correct. The
information provided by the troubleshooting module can then be used to
modify the'setup of the matrix elements to be fitted or to temporarily
switch off some 7 yield data to allow the minimization procedure to find a

e

way out from such an erroneous solutionu.
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Iv. INPUT INSTRUCTIONS FOR THE CODE GOSIA

IV.1 ORGANIZATION

Input, execution and control of the code GOSIA is achieved by specifying a
given sequence of option commands. These option commands are activated using
the input format OP,---- where ---- designates the four-character
alphanumeric name of the option command. Some options are used for input or
selection of input needed for specific tasks while other options execute
appropriate modules of the code. “

The code GOSIA can operate in either of two mutually exclusive
modes. The first, activated by the option OP,COUL, performs the calculation
of Coulomb excitation probabilities and 7-ray yields for a fixed set of the
matrix elements. No fitting of matrix elements to experimental data is
performed if 0P,COUL has been selected. The other mode, activated by the
command 0P,GOSI, should be used if a least-squares fit of matrix elements to
experimental data is desired. The user is free to use any other option
commands in conjunction with either the OP,COUL or the OP,GO0SI commands
consistent with an obvious logic. For example, the code cannot calculate
Coulomb excitation amplitudes if the level scheme is not defined, it also
can not execute the fit-related commands if 0P,COUL has been selected. The
input to the option commands OP,COUL and OP,GOSI contains suboptions for
which the prefix OP, is not appended to the name.

A summary of all available options is given below. Detailed
descriptions of each option and suboption command are given in alphabetical
order in the subsection of this chapter listed next to the name of each
option. Details of the file manipulation procedures are given in Chapter VI.
The names of the option commands are truncated to four characters. Full,

self-explanatory names are given in parentheses in the following
description,.
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CONT Suboption of OP,COUL and OP,GOSI which is used to
(CONTROL) control and select various optional features of the code
(Iv.3) for both execution and output. This option can be omitted
in which case default parameters will be used.
GP,CORR Execution option to modify the experimental data to correct
(CORRECT) for the difference between the integrated yield calculations
(Iv.4) and the point values used for the calculation of Coulomb
excitation cross sections and 7-ray yields, as described in
detail in III.4.
gp, COUL Activates the simple excitation/deexcitation mode. No fit of
(COULEX) matrix elements to the data is made with this option in
(Iv.5) contrast to OP,GO0SI. Consequently, the appreciable input
required for the fit procedure can be skipped. OP,COUL
contains the following suboptions:
LEVE
(Section IV.13)
ME
(Section IV.15)
EXPT
(Section IV.8)
CONT
(Section IV.3)
OP,ERRO Activates the error estimation module of the code. Also,
(ERRORS) it can be used to test the goodness of the solution, as
(IV.8) discussed in detail in Chapter VIII.
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0P, EXIT
(BXIT)
(IV.7)

Terminates the job and causes the final output to be

compiled.

e o oty € e 0> < o 4D s ez <08 M €0

EXPT
(EXPERIMENT)
(IV.8)

Suboption of OP,COUL and OP,GO0SI which is used to input
the experimental conditions for each of the experiments

to be analyzed.

Uptionally allows to declare permanent files to be attached

to the job in the input rather than in the job control
strean.

—— o 7 2 o S0 2 A 00 €T T

0P, GDET
(GE DETECTORS)
(IV.10)

i o e e e T 42 T i S S e D

0P, GOSI
(GG3IA)
(IV.11)

Creates the files which contain the data needed to calculate
the solid angle attenuation factors ( I.2.3). Output files
should be attached to the job when OP,YIEL is encountered.

This alternative option to OP,COUL is used when a fit of
matrix elements is to be made to Coulomb excitation data.
The suboptions for this option are the same as for OP,COUL

(however, note that the input to ME differs from that used
for 0P,COUL):
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0P, INTG
(INTEGRATE)
(IV.12)

LEVE

(Section IV.13)
ME

(Section IV.16)
EXPT

(Section IV.8)
CONT

(Section IV.3)

Execution option used to integrate the deexcitation 7Y-ray
yields, resulting from Coulomb excitation, over energy loss
of the incident beam in the target and over the solid angles

of the particle detectors.

Suboption of OP,COUL and OP,GOSI which is used to read in

and catalog the level scheme of the investigated nucleus.

0P, MAP
(MAF)
(IV.14)

Causes the g-parameter maps ( IIT.2 ) to be calculated and

stored on a permanent file.

e e s s 753 s et i T TP S D T Y

(OP,COUL Version) Suboption of OP,COUL which is used to

input and catalog the matrix elements.

G o a5 S o 0 A TR i VD S

-101-



- A ST > 400 G B 0D s A D W T A e

OP, MINT
(MINIMIZE)
(IV.17)

w0 i o s s o o T ey s s e WA

0P, POIN
(PGINT)
(IV.18)

(0P,GOSI Version) Suboption of OP,GOSI which is used to i=
establish the matrix element setup for fitting.

Executes the least-squares fit of the matrix elements to the
experimental data.

Execution option to calculate the Coulomb excitation and (e

deexcitation 7J-ray yields at fixed scattering angle and

bombarding energy.

o

AT o w2 D P R S T G G W

OP,RE, A
(RELEASE)
(IV.21)

25 €3 00 4 o i o e T 20 e ety LB <

Used to overwrite a given set of matrix elements by a set of .

random values lying within specified limits.

Used to input data necessary if efficiency-uncorrected (raw)
7 yields and/or yields resulting from summing several 7 #
spectra are to be used as experimental data. g

| TR

Releases all matrix elements previously fixed and voids all

coupling of matrix elements for the current minimization

run.
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0P,RE,C
(RELEASE)
(IV.22)

0P ,RE,F
(RELEASE)

(IV.23)

0P, REST
(RESTART)
(IV.24)

0P, SIXJ
(IV.25)

> o2 v e s e D aiam > T £

OP,STAR
(START)
(IV.26)

Releases all previously fixed matrix elements but preserves

couplings.

Voids coupling of matrix elements while retaining fixed

ones.

Causes the program to use, as a starting point, a set of
matrix elements stored on disk by a previous calculation

in place of the set given as input.

Creates a table of Wigner 6-j symbols used by the sum rules
code SIGMA ( Chapter V ). OP,SIXJ is case-independent, thus
it can be executed without defining the level and matrix
elements scheme. It can also be inserted anywhere in the

input sequence.

Execution option to calculate only the Coulomb excitation
amplitudes and cross sections, not the 7-ray yields. This
comprises a subset and consequently an alternative to
OP,POIN. This option can be used with either OP,COUL or

0P, GOSI.
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0P, TITL
(TITLE)
(IV.27)

Reads in the user-given title to be reprinted as a header
o the output (maximum 80 alphanumeric characters).

Can be repeated if more than one line is needed.

A € 200 ot s G e e i s om0

0P, TROU
(TROUBLE)
(IV.28)

Performs an analysis at the local minimum to pimpoint
erroneous experimental data. This option must be

inserted immediately before OP,EXIT.

- e T s G G e e e o e >

0P, YIEL
(YIELDS)
(IV.29)

Used for input of data required if it is necessary to
calculate the 7-ray deexcitation of the Coulomb excited
nucleus. 0P,YIEL is mandatory if OP,GOSI has been selected,
in which case it is also used to specify additional
spectroscopic information, i.e. branching ratios, mixing
ratios, lifetimes and known E2 matrix elements, as well as
relative 7 detector efficiencies and upper limits of the

unobserved transitions. The experimental deexcitation yields

are supposed to reside on a separate permanent file attached

to the job. Section IV.29 describes the structure of such

a file.
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IV.2 INPUT FORMATS

As a rule the input should be given in free format mode (READ=). This
implies that the number of entries should correspond to the number of
variables in the respective read list, different entries being separated by
either a comma or a space. Floating-point values can be given as iategers
(the decimal point is not required and the conversion is automaticj.
Integers may not be given as floating point pumbers. Blanks are not
equivalent to zeros, unlike fixed-field formats, therefore zeros must be
typed in explicitly. Some exceptions to this general input format will be
stressed in the descriptions of various options. A wrong sequence of input
entries is usually detected when a number is encountered instead of an
expected alphanumeric option code. In this case a message UNRECOGNIZED
OPTION --- is issued and the job aborted ( --- designates an unrecognized
string ). This means that the sequence of the input entries is wrong
somewhere between the last recognized option command and the entry

reprinted.

IV.3 CONT
(CONTROL)

This suboption of either OP,GOSI or OP,COUL is used to override default
settings of the job performance controls and to specify optional features of
the program. CONT can be omitted if the default settings of the control
parameters are satisfactory. CONT can be used anywhere in the OP,COUL and

OP,GOSI input stream, usually as the last suboption specified. The imput

format is as follows:
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CONT

Input control parameters needed for the job.

END, . Marks the end of CONT input.

The control switches are specified by a three-character alphanumeric string
followed by 2 comma and, in some cases, by a floating point number X (as a
convention, X will be used as the initial symbol for floating point entries
while symbols beginning with I are specified to be integer). Even if X has
obviously the meaning of an integer it should be entered as a floating point
number, the conversion being done by the code. Some of the switches require

additional input. The available control switches are as follows:

ACC,X. Sets the accuracy parameter used as an internal check of
the Adams-Moulton routine to 107™%, The default value is X=5.
The step-size is either doubled or halved depending on
whether the maximum deviation is less than 0.02x10™* or
greater than 107%. Do not use too large a value of X, as
it slows down the calculation considerably with little
increase in accuracy for X much larger than 6. Instead use
the switch INT, to achieve maximum accuracy. See III.1 for
details.

ACP,X. Sets the convergence test parameter for the exp (A)
expansion (IIT.2) to 107%. Default value is X=5.
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----------------------------------------------------------------------------

CCF, ‘This switch overrides OP,MINI or OP,ERR0 commands and causes
GOSIA to terminate execution after calculating and storing
the internmal correction factors. This allows to split the

i minimization or error estimation jobs, which can be helpful

when using unreliable or overloaded computer systems.

CRF, This'option causes GOSIA to read in the internal correction
factors from file TAPEl instead of recalculating them. This is
a valuable time saver for restarting the minimization and
error calculations using the OP,REST command. The internal

- correction factors are stored on TAPEl automatically when

calculated by the code.

--------------------------------------------------------------------------

CRD,X. This switch defines which experiments use circular particle
detectors. CRD, simplifies the input to OP,INTG.
The additional input is as follows:

IE (1) The indices, according to the input sequence to EXPT, of
TE(2) those X experiments involving circular detectors.
Note that the axial symmetry option in the EXPT input should
be used rather than CRD, if the circular detector is

IE(X) symmetric with respect to the z (i.e. beam) axis.

DIP,X. Sets the El dipole polarization parameter to be X/1000. (See
1.18 ). Default value is 5.
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----------------------------------------------------------------------------

END, Mandatory CONT flag marking the end of CONT input.
=
FIX, This switch provides the easy way to override matrix
elements setup specified by ME input. When FIX, is "
encountered all matrix elements are fixed and cnly those
specified by subsequent input are released for minimization
-
or error estimation. Further input required: o
M The number of matrix elements to be released. !
I(1) Indices of the matrix elements to be released (defined -
I(2) by the sequence of the ME input). oy
IT(IH)
Using FIX, it is possible to reduce easily the number of free 3
matrix elements without modifying the ME input. :
llllllllllllllllllllllllllllllllllllll l.‘ho.olﬂ..ol;.ontnhh.‘l.!.Q.ol..oll' %
FMT, Fast minimization switch. Causes the code to terminate the job &
immediately after the OP,MINI step was completed, without
compiling the final output. FMI, provides substantial time 9
saving when the final output is not needed since the compila- 4

tion of the final OP MINI output involves full Coulomb exci-
tation calculation. The remainder of the input, including the
repeated OP,MINI commands is ignored if the FMI, switch has
been selected. FMI, cannot be used when the SEL, switch is

set.

----------------------------------------------------------------------------

-108-



INR, Independent normalization switch. Overrides the relative

'g normalization of 7 detectors and different experiments as
B specified in OP,YIEL input. With INR, switch set,the code
: will calculate the best normalization factors (i.e. the ones

providing the minimum value of Xz for a given set of matrix

el

elements) for each single 7 detector independently.

-------------------------------------------------------------------------------

INT,X. Overrides the default accuracy check parameter,IS,of Adams-
JEV IEl,Isl Moulton integration routine for specified experiments. The
accuracy check is made every IS steps,with a resultant
e . possible change in integration stepsize. The default value
is IS=1,thus the stepsize may be adjusted after each complete
IEX’ISX integration step. Setting IS=1000 effectively switches oif
the stepsize control since 1000 steps exceeds the range of
integration (according to 3.1),forcing the code to retain
maximum accuracy. X has the meaning of the number of
experiments for which the default is to be altered.
Additional input consists of X records,IEn being the
experiment number and ISn the accuracy control parameter for_
this experiment. The experiments are numbered according to
the sequence of the EXPT input, thus this control switch can

only be used after the suboption EXPT defimitien.
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LCK, This switch allows to fix a series of matrix elements ™
without modifying the initial setup, e.g. it can be used to ‘
keep the matrix elements belonging to a given multipolarity - e
fixed during minimization. It requires further inmput as
. follows: -
I,11 .
I,I1 Ranges of matrix elements to be fixed.
0,0 Two zeros end input. b
......................................................... et iseces e e
NCY, X. Causes the kinematics calculation to be performed assuming .
final state of the excited nucleus is the state with user-
given index equal to X. Default value is 2.0. The states of
an excited nucleus are numbered according to the sequence of
the LEVE input.
o
PRT, This overwrites the default options specifying the printout.
It requires additiomal input as follows: i
LI
I is the print option code and Il is the user-specified -
I,I1 setting. The 0,0 ends the imput of the print options. E
0,0 The following table lists all the available codes:
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A CODE DEFAULT OTHER POSSIBLE

VALUE VALUES CONSEQUENCES OF OPTION
f@r 1 1 0 Prints out level scheme,input patrix
-1 elements and kinematics (1).

0 inhibits such printout,while -1 can
be used to suppress kinematics only.
¥hen O is selected, the sequence:

CONT

PRT,

1,0

0,0

END,
should be inserted before the LEVE and
ME suboptions of either OP,COUL or
0P,GOSI to set an appropriate flag.

2 1 0 Reprint of experimental 7 yields to
be fitted (1).

0 suppresses this printout.

3 1 0 Prints out experimental branching ratios
and a comparison of experimental and

calculated values (1). O inhibits this

printout.

-1

T
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-2 0 or any

positive integer

Prints out the yield semsitivity

(ay parameters) map (see III.5)

after every Il number of

minimization steps if Il is positive.
Note that compilation of this yields
sensitivity map is time consuming
since it requires calculation of
derivatives with respect to all matrix
elements. Consequently,it should be
compiled only when necessary. I1=-2
causes the compilation of this map
when the OP,EXIT command is encountered
after at least one execution of the
OP,MINI command. I1=0 specifies no
compilation or printout of this

sensitivity map.

1111 Any positive

Prints out the value of y?/N, where N is
the number of data points, after every
specified Il number of minimization
steps. If Il=1 thenm y?/N will be

printed after every step.

Printout of the gradient will occur
every Il minimization steps. Default
value effectively inhibits this

printout.

integer
11111 Any positive
integer
0 1

Specifies printout of excitation
amplitudes and population when 0P,EXIT
is encountered after at least one 0P,
MINT command (1). I1=0 specifies no
such printout.
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i

I1=1 specifies a comparison of
experimental and calculated yields.
I1=0 specifies no such printout.

This table will not be compiled if FMI,

switch was used, even if Il=1.

Unused - free to be assigned.

10

" I1=1 specifies printout of kinematics

for each integration meshpoint.
I1=0 inhibits such printout.

11

I1=1 specifies printout of 7 yields for
each integration meshpoint.
I1=0 inhibits such printout.

12

I1=1 specifies printout of
q-parameter maps. I1=0 inhibits

such printout.

13

T1=1 specifies printout of normaliza-
tion constants as defined by equation
4-18, I1=0 inhibits such printout.

14

T1=2 specifies printout of the
deorientation effect attenuation
coefficients. Il=0 inhibits such
printout.
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15

I1=1 specifies printout of mean

lifetimes. I1=0 inhibits such printout.

16

I1=1 causes all possible calculated
yields to be printed in the tables
comparing the experimental and
calculated yields.

I1=0 causes the printout of the
experimental and calculated yields
only for the observed transitions

and unobserved transitions for which
the calculated values exceed the upper
limits specified in the OP,YIEL input.

17

Any positive

integer

Causes printout of the probability
sensitivity maps (the a  parameters
defined in III.5 ). Il specifies

the number of matrix elements having
the largest influence to be printed
for each level with the corresponding

a values.
P

18

Causes the printout of the interpolated
internal conversion coefficients.
I1=0 inbhibits this printout.

19

Il=1 causes the printout of excitation
amplitudes when executing commands
other than OP,STAR (e.g. OP,INTG).

s o a0 oy __,__,,,,w__m_"‘,,,,__‘_.,___,_..._...—-.-;——.---uu--su-—-.-n,-n»~—w—amm-nnq‘_q.—.—-——qn—_..--.--——-.—--._—-——o—u-m
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20

1 I1=1 causes the printout of efficiency-
uncorrected yields and respective
efficiencies if OP,RAW is used. This
output is produced on TAPE23. Note that
the 7-ray energies printed out are
Doppler-shifted, according to the user-
given geometry and calculated kinematics
Modified epmergies are used to calculate

the detection efficiencies.

----------------------------------------------------------------------------

I(1)
I(2)

I(IE)

Creates a file ( TAPEL8 ) containing the information needed

by the program SELECT to generate the correlation matrix used

for the error calculation - see the description of OP,MINI and
OP,ERRO. This switch is only active when 0P ,MINI is

executed with a default setting of the print parameter 4 (see

the description of the print parameters defined by the PRT,

switch below).

This causes the code to skip selected experiments during the
minimization procedure, i.e., the code does not take into
account the selected experiments. This switch can be quite
useful since often a subset of the experiments is senmsitive
only to a subset of matrix elements. The SKFP, switch requires
additional imput:

The number of experiments to be skipped.

The indices of experiments to be skipped (experiments are
numbered according to the sequence in which they appear in
the EXPT input). .
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SMR, This control switch causes the input file for the SIGMA B
. program (See Section V) to be generated when OP,ERRO is -

executed. This switch is ignored if OP,ERRO is not executed. g

TEN, Causes GOSIA to write the statistical tensors in the system
of coordinates defined by Fig. I.3 on TAPE17 when either
0P,STAR or 0P,POIN is executed. The tensors written are the .?ﬁ
pure Coulomb excitation tensors, as defined by 1.30, and can o
subsequently be used by the external programs to examine the )

7-decay process (e.g. to study the deorientation effect).
The structure of the statistical tensors file is described
in Chapter VI.

--------------------------------------------------------------------------

VAC, This switch is used when it is desired to change
the default parameters used to evaluate the vacuum

deorientation effect (I.2.1). It requires the following -
additional input: A “

I,X(D where I= 1,2,...,7 specifies the parameter to be overwritten, é
X(TI) being the new value. Two zeros end this input. The
parameters are defined as in 1.53 . The index value I

is as follows:
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I X(D) Default Value
1 I 3 |

2 r 0.02(ps™h)

3 A" 0.0345(ps™ )
4 T, 3.5(ps)

5 g Z/A

8 K 6.107°

7 X 0.6

A common g factor is assumed for all nuclear levels. Note that g=Z/A often
is a poor estimate. The known g factors of the lowest states can be used to
give a better estimate.

Note that since the lifetimes are given in picoseconds the field
strength parameter K is 10"1? ¢imes the true value in gauss (the default
values corresponds to 6.10° gauss) .

The deorientation effect can be switched off (if, for example,

the influence of deorientation on the result is to be tested) by specifying:

WRN, X. This switch causes a warning message to be printed with
" the comparison of experimental and calculated yields for
those yields for which the experimental and calculated
values differ by more than X standard deviations. The default

setting is X=3.
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IV.4 OP,CORR
( CORRECT )

This execution-only option requires no input other than the command itself.
It uses the file of original experimental yields (see Section IV-30), read
from TAPE3, and writes on TAPE4 a set of vields which have been modified to
correct for the difference between the yields calculated using full
integration and the yields calculated using "mean® values of bombarding
energy and scattering angle for each experiment (see Equation 3.23). The
modified (corrected) experimental yields, on TAPE4, then are used as data
for the minimization and error estimation procedures. The 0P,INTG and
OP,CORR commands must be run as one job with the OP,CORR command following
OP,INTG in the sequence of option commands. The values of the mean energy
and scattering angle used for the point calculations are those specified for
each experiment in the EXPT input.

Note that NTAP (specifying the file containing the experimental
yields in OP,YIEL) nust equal 3 when using the 0P,CORR command (i.e. the

file containing the original uncorrected experimental yields must be TAPE3).
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IV.5 OP,COUL
( COULEX )

This option is used to calculate the Coulomb excitation cross sections and
yields of deekcitation_7—rays when no fitting of matrix elements to data is
required. This option essentially is a truncated version of 0P,GOSI which it
replaces when fitting of matrix elements to data is not desired. The
advantage of OP,COUL over the alternate OP,GOSI is that the comsiderable
input of data required for the fitting p;ocedure can be omitted. The OP,COUL
command is used to input the information defining the nucleus studied and
the experiments for which the Coulomb excitation calculations are to be
performed. The OP,COUL command should occur immediately following OP,TITL
since the input to OP,COUL is used by almost all modules of the program. The

input to OP,COUL comprises four different sub-options:

LEVE Read and establish the level scheme of the investigated

‘nucleus. See Section IV.13.

ME Read and catalog the matrix elements. See Section IV.1S5.
Note that this sub-option input differs from that of the version
used with OP,GOSI.

EXPT Input of experimental parameters. See Section IV.8.

CONT Used to control and select various opticnal features of
the program for both execution and output. This suboption
can be omitted in which case default parameters of the

code will be used. See Section IV.3.

A blank record is necessary to terminate the input to OP,COUL.
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IV.6 OP,ERRO
(ERRORS)

The module of GOSIA activated by OP,ERRO is designed primarily for
‘estimating the error bars to be assigned to the set of matrix elements
corresponding to the minimum value of xz. However,this option can also be
helpful in checking the existence of better solutions by providing a
relatively fast way of scanning the xa hypersurface. Brror estimation is
'pefformed in two separate stages - first, the *diagonal®,or uncorrelated
errors are found, next, the diagonal errors are used in the estimate of the
foverall®, or correlated errors. This procedure is described in detail in

Section ITI.B8, see also Chapter VIIT for some recommendations concerning the
use of 0P,ERRO.

The input to OP,ERRO is as follows:

0P, ERRO |
IDF, S, MEND, IREP , IFC, RMAX

where:

- IDF Mode flag. IDF=0 sets diagenal error calculation mode, IDF=1
causes overall error estimation.

MS,MEND The range of matrix elements indices for which error estimation is
to be performed, i.e. the calculation will be carried out for
matrix elements with indices fulfilling MS < INDEX < MEND.
¥S can also be entered as 0 or -1. MS=0 implies that the
calculation will be performed for all matrix elements (excluding
fixed ones - see below), thus providing a short form of specifying
the full range. MS=-1 can be used only for "overall® error
calculation (IDF=1). This allows the user to select an arbitrary
set of the matrix elements defiped by additional input required

only if MS=-1. In this case the input to OP,ERRO is as follows:
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OP,ERR0
1,-1,0,IREP,IFC,RMAX
MSI,MEND1

NS ,MEND
n n
0,0

where MS and MEND define the range of matrix elements indices

31m11arly to MS and MEND when both are positive. MS —MEND selects

a single matrix element. Two zeros terminate this portlon of input.

This feature allows to repeat the overall error estimation

for a subset of matrix elements or to include the matrix elements

which previously have been skipped without modifying the ME setup.
A given value of MEND is redundant if MS=0 or MS=-1 has

been selected.

Repetition flag, assuming values of 0,1 or 2. IREP=0 implies a new
calculation, i.e. no previously stored errors are read in and the
error file will be created. 0bv1ously, TREP=0 should be used in
conjunction with IDF=0 for a first calculation of the diagonal
errors. IREP=1 causes previously stored errors to be read in and
used for the continuation of the error estimation. The errors are
stored on file TAPELS, which is updated during each execution of
0P ,ERRO. IREP=2 means that the sum-riules file, TAPE3, has already
been created during a previous foverall® errors calculation and
causes the code to read it in and update it during the current run.
The CONT switch SMR, should be set for both creation and update of
TAPE3. Note that in this case the experimental yields must reside
on TAPE4 to avoid a multiple definition of the inmput/output files.
TAPE3 is created with IREP 1 and updated with IREP=2 only if

SMR, was specified. IREP=2 reduces to IREP=1 if the SMR, switch was
not encountered. Both TAPE15 and TAPE3 are required by the sum-
rules code SIGMA - see Section V.2.2.
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IFC

Note:

The proper combination of MS,MEND and IREP makes it posssible to
split the time-consuming error estimation into several runs which

is important when .unning GOSIA on heavily loaded or unreliable
computers. Wfﬁ

IFC=0 specifies that the correlation matrix is to be used to reduce s
the number of matrix elements taken into account to calculate the ;
correlated errors ( see Section III.6 ). The correlation matrix ﬂwﬁ‘
is created by the external program SELECT. To prepare the input
information for SELECT it is necessary to execute 0P,MINI with
CONT switch SEL, and the default value of the print parameter 4,
i.e. 4,-2. This should be done at a final stage of minimization
prior to the error calculation. The information for SELECT is
written by GOSIA on TAPE18 which should be attached to SELECT
also as TAPE18. No other input is necessary. The output from A
SELECT is written on TAPEIO and should be attached to the OP,ERRO

job as TAPE1S. |

IFC=1 implies that the correlation matrix will not be used. In this

case it is not necessary to create and attach TAPE18. It is however

strongly recommended that IFC=1 be used only for small cases with -
all matrix elements of similar significance. Otherwise, selecting )
IFC=1 will dramatically increase the execution time with no effect ?ﬁ
on the result. , J
IFC is redundant if IDF=0. -
The largest floating point number available on a given computer. 'fﬁ
RMAX is used to prevent possible overflows during the scan of a “55
probability distribution ( see III.5 ). g
q
"
Fixed matrix elements will not be varied during the error '
calculation. Matrix elements cannot be coupled when OP,ERRO is
executed. Use release options ( OP,RE,A and OP,RE,F ) to remove
couplings and unwanted fixing of matrix elements introduced in the
ME setup. F?ﬁ
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IV.7 OP,EXIT

This option causes the code to terminate the execution and to compile the
final printout as specified by the CONT PRI, print options. OP,EXIT may be

inserted anywhere in the input stream and the execution will terminate after

the completion of the last executable 0P,--- command encountered before
) OP,EXIT. The remainder of the imput stream will be ignored, thus OP,EXIT

allows bto execute various modules of the code without removing the

irrelevant portions of the imput. No additional input is required.
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IV.8 EXPT (Mandatory suboption of OP,COUL and 0P,GOSI)

This suboption prdvides input of the experimental conditions used for the
various experiments to be analyzed. The experiments are defined by mean
values of projectile energy and scattering angle, which are used for "pointf
excitation/deexcitation calculations. The realistic approach must include
integration of 7 yields over finite ranges of bombarding energy and
scattering angles. This feature is provided by OP,INTG which should be used
to reproduce observed 7 yields. As described in Chapter III, GOSIA uses
"point? energy and scattering angles to execute all modules except for the
integration module activated by OP,INTG. The options OP,INTG and OP,CORR are
used to convert experimental 7 yields to "point® values. Mean values of
bombarding energy and scattering angle used by OP,CORR are the omes given in
the EXPT input.

The input to EXPT is as follows:

EXPT
NEXP,Z ,A
1 1

sB_,%A LB 6., 0, MM, TAX, ¢, TKIN,LN

LaB’
NEXP records equal to the anumber of experiments.

The experiments will be numbered by the code according to the sequence of

these records from 1 to NEXP.

Detailed explanation of entries is given below.

NEXP The number of experiments defined in the input. Each
experiment corresponds to a particular combination of

bombarding energy, scattering angle, experimental detector

arrangement and (Z,A) of the nucleus exciting the nucleus
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being investigated. ( NEXP<S50 ).
Charge number of the investigated nucleus (Integer format).

Mass (in units of amu) of the investigated nucleus.

‘Charge number of the uninvestigated nucleus. A positive

value signifies target excitation, i.e., Z =Z__ . iy
n projectils
negative value signifies projectile excitaticn, i.e.,

Z (Integer format).

n= target
Mass (in the units of amu) of the uninvestigated nucleus.
Au will thus correspond to the projectile mass if Zn

is positive and target mass if Zn is negative. A negative
sign appended to An signifies that this is a "thick® target
experiment, that is, the beam is completely stopped in the
target. This latter option has the time saving feature of
switching off some irrelevant calculations such as the

deorientation effect and recoil velocity correction.

The mean projectile bombarding energy, in the laboratory

frame of reference, to be used for calculating the Coulomb

~ excitation yields for the particular experiment. Inmput in

units of MeV.

The mean scattering angle (degrees) of the projectile in

the laboratory frame of reference. GLAB'must be positive if

the projectile is detected. A negative sign should be given
with the true value of the projectile scattering angle

if the recoiling target nucleus has been detected to ensure
the selection of the proper kinematics. Note that by definition
9 is alway% positive, the sign being only used by the code

LAB
to set appropriate flags.
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6.9,

Controls the number of magnetic substates to be included in
‘the full Coulomb excitation calculations. For a given ground

state polarization Mo, the magnetic substates in the range

'(M -M M +¥ ) will be included for each level. The code

takes care of the obvious limitations in magnetic substates
set by the spins of the states: M~=0 corresponds to the conser-

vation of magnetic quantum number as occurs for backscattering.

Controls the number of magnetic substates to be included
in the approximate Coulomb excitation calculatlon The
meaning of H in the same as for M o namely magnetic
substates in the range (M —M M +H ) will be included for
all states for a given ground state polarzzatlon M ) The
only allowed values of M are 0 or 1.

- The axial symmetry flag which can take values of O or 1 only.

Zero defines axial symmetry of the particle detector in which
case further input is simplified and the calculations are

speeded up. Unity implies that axial symmetry is not assumed.

The azimuthal angular limits of the particle detector (in
degrees). The coordinate system used has the z axis in the
direction of the incoming beam. The x and y axes can be
defined in any convenient way provided that the angles of all
detectors are given relative to the same coocordinate

system. Note that ¢, must be larger than_¢1.

The kinematics flag which can take values of O and 1 only.

If AP . .. 2 A »  IKIN specifies which of the two
rojectile Targat
possible kinematic solutions to choose. IKIN=0 implies that

- the solution having the larger center—of-mass scattering

angle is chosen. Redundant if AProjectile < Armrget'
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LN Normalization constant convrol which specifies that the given

experiment has a normalization constant coupled to that for
experiment LN. The normalization constant is the factor
normalizing the calculated yields to the experimental for 2
"given experiment (See the description of the imput YNRM in
OP,YIEL, Section (IV.29). Experiments are numbered aécording
to the sequence of records read in under EXPT. Therefore, if
LN is equal to the record number defining 2 particular
experiment then an independent normalization is assumed. If
LN does not equal the record number defining a given
experiment then the program.requires a user-given relative
normalization between the current experiment and experiment
LN which is input using the OP,YIEL command.

This iﬁput is useful for experiments where several scattering
angles are measured simultaneously and therefore the relative
normalization for the different scattering angles is known
for this common experiment. The code will fit one absolute

normalization constant to the coupled experiments.

As an example consider two experiments to study 733e. One experiment
involves Coulomb excitation of a 720e target by z 50 MeV 183 beam studied
at a laboratory scattering angle of 160° using an annular particle detector.
The second experiment involves projectile excitation of a 170 MeV 733e beam
on a goan target studied at a scattering angle of 150° by a particle
detector subtending an azimuthal ¢ range from =-30° to 30°. The sample input

is as follows:

EXPT

2,32,72
8,16,50,160,3,1,0,0,0,0,1
-82,208,170,150,3,1,1,-30,30,0,2
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Three magnetic substates are included for the full Coulomb excitation
calculation and 1 magnetic substate for the approximate calculations for
both experiments. Experiment 1 was done using an axially symmetric
geometry, therefore ¢1 and ¢2 are redundant. Independent normalization of
both experiments is desired; therefore, the LN indices correspond to the
experiment record numbers. In both cases A < gou’ Bus IKIN is

projectile Atu.r a
redundant. '
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Iv.9 0OP,FILE
This option allows to define the permanent files necessary for a current job
in the GOSIL ipput rather than in an external job control stream. The use of
- 0P,FILE is optional, but when used it should be the first command in the
input stream, so the full output goes to the user-defined file. The input to
- O0P,FILE is as follows:
0P, FILE
E I11,I12,I3
NAME
0,0,0
where:
) I1 - Unit number (TAPE number). I1=22 is the ouput file.
: I2 - Status indicator. I2=1 indicates STATUS=0LD, I2=2 implies
STATUS=NEW, while I2=3 corresponds toASTATUS=UNKN0WN.
I3 - I3<1 to indicate formatted file, I3=2 means unformatted
(binary) file. All files used by GOSIA are formatted,
B except of TAPEL (internal correction coefficients file)

which should be declared as unformatted.

NAME - user-assigned filename.
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IV.10 OP,GDET
( GE DETECTORS )

This option is used to create a file ( TAPES ) which contains the data

needed to reproduce the 7-energy dependence of the solid angle attenuation

factors for the coaxial Ge or detectors (see Sectiom I.2.3). For each 7
detector a calculation following the formalism presented in Section I.2.3 is
carried out at several 7-energy meshpoints, then the energy dependence is
fitted using a rational approximation according to Eq. 3.15. The fitted
coefficients stored on TAPES are automatically read in when O0P,YIEL or
O0P,INTG is encountered. This means that OP,GDET should be executed once
before the execution of either OP,YIEL or 0P, INTG.
The input to OP,GDET is as follows:

NED A number of physically different 7 detectors being used for a
whole set of experiments defined in EXPT. The physically
identical detectors are understood as the ones having an
identical crystal geometry and being placed at the same
distance from the target. In addition, if graded absorbers

~were used, the physically identical detectors are assumed to be
equipped with the same sets of graded absorbers. (NPD<50)

NPD should be given with a minus sign appended if OP,RAW is to
be used, i.e. if any of the experiments defined contains not
efficiency-corrected spectra. In this case an additional file,
TAPE8, is created. TAPE8 contains the absorber information,

needed to reproduce the efficiency curves - see 0P,RAW (IV.20).
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r,R,L,d
e 1,1 ...1  Specifies the geometry and the graded absorbers setup for each

: Lt N
g o ’ of the physically different detectors. This sequence should be
g repeated NPD times. All entries are given in centimeters. The
E ‘entries are defined as follows: ,
: A f
T The radius of the imactive p-core (the inmer radius of a Kﬁ;/hwéaéa
- crystal) S
ﬁ; R The radius of the active n-core (the outer radius of a crystal).
g o’
E L The length of a crystal.
d The distance from a target to the face of a crystal.
. 11,.,17 The thicknesses of the commonly used graded absorber materials,

with the subscripts 1 through 7 corresponding to Al, C, Fe, Cu,
Ag/Cd/Sn, Ta and Pb, respectively. The absorption coefficients
for these materials are defined in GOSIA, for the energy

meshpoints used, as internal data.

Tt should be noted that if Ta or Pb absorber layers were used it is assumed
that the 7 transitions having an energy below the cutoff of the absorpticn
curve are of no interest, therefore the energy-dependence fit is made only
"""" using a subset of meshpoints corresponding to the 7 energies above 60 keV if
- Cd/Sn layer was employed, above 80 keV if a Ta layer was employed and above
100 keV if a Pb layer was employed. It is also assumed that the symmetry
o axis of the crystal is aligned with the center .{ the target. Moreover, the
effect of the in-flight decay, which changes the geometry as seen by a
decaying nucleus, is not taken into account for the estimation of the solid
angle attenuation factors. The significance of this correction is in all

cases far below the level of the experimental accuracy.
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IV.11 OP,GOSI
( GOSIA )

Tﬁis alternate option to OP,COUL is used when fitting matrix elements to
Coulomb excitation data. The 0P,G0SI command is used to input the
information defining the nucleus studied and the Coulomb excitation
experiments to be used in the least-squares fit procedure. The 0P,G0SI
command shall occur immediately following OP,TITL since the input to 0P,GOSI
is used by almost all the other option commands of this program. 0P,G0SI
requires the same input sequence of suboptions as 0P,COUL, the only
difference being that a different version of ME is used. That is, the input

comprises the following four suboptions:

LEVE Read and establish the level scheme of the investigated
(LEVELS) * nucleus. See Section IV.13.

¥E - Read and catalog the matrix elements. See section IV.1§.
 Important: note that the input to ME under OP,GOSI
differs from the version used for 0P, COUL.

EXPT Input of experimental parameters. See Section IV.S.

CONT Used to control and select various optional features of

(CONTROL)  the program for both execution znd output. This option
can be omitted in which case default parameters of the

code will be used. See section IV.3,

A blank record is necessary to terminate the input
to OP,GOSI. '
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IV.12 OP,INIG
(INTEGRATE)

This command produces the most accurate calculation of the yields of
deexcitation 7-rays following Coulomb excitation to be used for realistic
comparison with experimental data. This option includes integration over
solid angle of the particle detectors, energy loss in the target as well as
full correction for the recoil velocity of the deexciting nucleus and the
deorientation effect.

OP,INTG comprises two distinct sﬁagesp The first stage
calculates the yields of deexcitation 7-rays integrated over azimuthal angle
¢ for each energy and scattering angle meshpoint. This calculation of the
meshpoint yields should be repeated for each experiment according to the
order the experiments appear in the EXPT input. GOSIA stores the calculated
meshpoint yields on internal files. The second stage uses the data stored on
these internal files to integrate over bombarding emergy and the range of
scattering angles subtended by the particle detectors which is performed by
interpolating between the 7 yields calculated at each meshpoint. It is
permitted to integrate over any arbitrary (6,¢) shape for the particle
detector including the case of several ($4) ¢ ranges for each 6 value. An
option is included to simplify integration over circular detectors because
of the frequent use of such a geometry. The imput for the circular detector
is a sligthly modified subset of the normal inmput.

The full input to OP,INTG is described below followed by the input
for the circular detector option. Since the input to 0P,INTG is long 2
summary of the input is given at the end of this section to serve as a quick

reference.
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IV.12.1 NORMAL INPUT TO OP,INTG

0P, INTG
NE,=NT,E

min’' mex’ min’ max
NE
NT
E B

min® mssx

min’ mesx

The total number of energy meshpoints at
which full Coulomb excitation calculations will
be performed (NES11).

The total number of § meshpoints at which

the full Coulomb excitation calculations will
be performed. Negative value of NT specifies
that the (8,¢) shape of the detector will be

determined by the user - see below.

The minimum and maximum bombarding energies (in
MeV) between which the integration is to be

performed.

The minimum and maximum angles (in degrees)
between which the integration is to be
performed. Note, 6 angles are always positive
and correspond to laboratory scattering angles
of the detected particle, that is, the angle of
the scattered projectile if it is detected and

the angle of the recoiling target nucleus if it

is detected. The above input string is modified
if the circular detector flag CRD in CONT is
activated for this experiment, as described

later.

-134-

bl




E_,E B Energy meshpoints at which the exact Coulomb

excitation calculations are performed (MeV).
*% These must exceed or at least equal the range
over which the integration is to be
performed to obtain reliable Lagrange

‘g ' interpolation.

91’92"°’9NT Projectilelgcattering angles (degrees) in the
laboratory frame, used as meshpoints. Note, if
the target is detected then the projectile
scattering angle corresponding to the

t detected recoiling target angle must be input

with 2 negative sign to set the flag specifying

the target nucleus detected.

The iﬁput angles must correspond to the

detected particle angular range which

exceeds or at least equals the range of angles

subtended by the detector to obtain reliable

Lagrange interpolation. Do not input these

angles for the circular detector option.

NFI The number of ¢ ranges for each Gi meshpoint
needed to describe the &(¢) dependence.

- ¢1,¢2,... NFI pairs of ¢ angles describing the ¢ range

for given Gi.

The above two records must be input for each § weshpoint specified. NFI
should not exceed 4. In most cases NFI=1, then the pair of ¢ angles simply
specifies the lower and upper ¢ limits for a given & meshpoint. However,for
some geometries, such as for rectangular shaped detectors, it is necessary
to include more than one ¢ range for some § values. For example, a
rectangular detector placed with its normal at 45° to the incident beam has

(6,¢) contours shown in adjacent figure:
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The contours for the largest 6 are subdivided into two ranges of ¢ as shown
by the cross hatched areas in the figure. Thus, in this case NFI=2 for any 6

meshpoint in the cross hatched area.

Do not input NFI and the ¢ ranges if either the circular detector
option or axial symmetry is specified.

This ends the input required to calculate the 7-ray yields integrated over
azimuthal angle ¢ at the specified set of meshpoints. This part of input
nust be repeated for all experiments defined in EXPT.

The second stage of the input is required for the integration and once again

has to be entered for all experiments:

NP Number of stopping powers te be inmput, 3SNP<20.
If NP=0O then the stopping power table is taken
from the previous experiment and the following
input of energy and dE/dx values can be omitted

””” for this case. This is useful where experiments

differ only with regard to range of scattering

angles or bombarding energies.
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NI1,+NI2

A¢1’A¢|Nia|+1

The energy meshpoints (in MeV) at which

values of the stopping power are to be input.

Stopping powers in units of HeV/(mg/cmz).
Interpolation between ﬁhe energy meshpoints of
the stopping power table is performed during
integration. Consequently it is important

to ensure that the range of emergy meshpoints
of the stopping power table exceed the range-
of energies over which the integration is to

be performed.

The number of equal subdivisions of energy
(NI1) and projectile scattering angle (NI2)
used for integration. Lagrange interpolation
is performed to interpolate between the
(Ei,ei) meshpoints at which the full Coulomb
excitation calculations of the deexcitation
7-ray yields were performed (See Section
ITI.4). Both NI1 and NI2 should be even and
not exceed 100. If odd values are given the
program increases them to the next larger even
number. However, the A¢ input will be confused
if NI2 is negative and odd.

Inportant: NI2 can be negative and must be
negative if NT is specified to be negative.
Conversely, NI2 must be positive if NT is
positive. If NI2 is negative then the

following input must be provided:

where A¢i'is the total range of ¢ (in degrees)
for each equal subdivisicn of projectile
scattering angle. That is, A¢i equals the sum
of all ¢ ranges for a given subdivision &

value if the azimuthal angular range also is
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subdivided into non-contiguous regions. Note
that there is an important difference in how
the interpolation over scattering angle is
performed depending on whether NT and NI2 are
both positive on both negative. For the
positive sign the program interpolates between
the calculated yields at each & meshpoint.
This produceé excellent results if the ¢
dependence of the particle detector is a
smooth function of projectile scattering
angle, 4.
The negative sign option should be used if the
¢ dependence is more complicated or if ¢
changes rapidly with 6. When the negative sign
is used the program stores for each meshpoint
the calculated yields per unit angle of
azimuthal range, i.e., the calculated yields
divided by the total ¢ range specified at that
angle for the exact calculation. The program‘
then interpolates these yields per unit of ¢
between the meshpoints. These interpolated
values are then multiplied by the appropriate
A¢ for each subdivision meshpoint prior to
integration. Note that the code uses NI2 equal
subdivisions of projectile scattering angles.
This is not the same as equal division of
geometric angle of the detector if the

recoiling target nucleus is detected.

The circular detector option (CONT CRD,)
incorporates a feature to calculate
automatically the azimuthal angular range

8¢ at each subdivision of scattering angle 6.
Consequently, do not input A¢ values when

~using the circular detector option.
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The integration-related portion of the input must be repeated for each
experiment defined in EXPT.

It is recommended to use as small a number of meshpoints as
possible because the full Coulomb excitation calculations performed at the
meshpoints are time-consuming. In many cases the required accuracy can be
achieved by requesting a large number of subdivisions between the

meshpoints, the values in subdivision points being found by {fast

interpolation.
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IV.12.2 CIRCULAR DETECTOR OPTION

The input for a given experiment differs slightly if the circular detector
option is selected. This option is activated by the flag CRD, in the CONT
suboption of either OP,COUL or OP,GOSI. For such experiments the input to

0P,INIG is as follows:

NE,NT,E 8,4,9, o

. 0B
@min mak

In this case 6 and ¢ are the angular
coordinates of the center of a circular
particle detector subtending the half-angle
91/2. The remaining entries are identical to
the ones described in the previous section.

The energy meshpoints for the full Coulomb
excitation calculation, analogous to those

described in the previous section.

The above input is used in the first stage, that is, in the meshpoint

calculation. The input of the second stage, that is, the integration

section, should look as follows:

(dB/dx) |, ..., (dB/dx)

NI1,NT2

Number of stopping powers to be input.

Energy meshpoints for the stopping powers in

MeV.

The values of the stopping powers, analogous
to the normal input. If NP=0 the values of
this table will be those from the previous

experiment.

Number of subdivisions of energy (NI1) and
projectile scattering angle (NI2) used during
the integration. Both shall be even numbers
and shall not exceed 100.
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| IV.12.3 SUMMARY OF INPUT TO OP,INIG - NORMAL INPUT
» 0P, INTG
" NE,NT,E E ] . 79
min nax m:.n masc
. E,E,....Eg
A £0 ,20 ..., 40,
NFI

¢1’¢2""’¢2NFI—1’¢2NFI

This portion of imput is to be entered for each experiment defined in EXPT,

unless axial symmetry or circular detector option have been used.
NP

E ,B_,...,E

1773’ NP

(dB/dx) _, (dB/dx) , - - -, (dB/dx) o,
NI1,=NI2

n? A¢1’A¢a’°°"A¢|N12|+1

This portion of input must again be given for each experiment.
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IV.12.4 SUMMARY OF INPUT TC OP,INTG - CIRCULAR DETECTOR OPTION

E ,E

TR

This input should be defined in the part of the input related to the

calculation of the meshpoints. The remainder, listed below, should be

included in the integration-related section.

(dB/dx) , (dB/dx) ,, ..., (dE/dx) _,

NI1,NI2
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IV.13 LEVE
(LEVELS)

Mandatory suboption of both OP,COUL and OP,GOSI

This suboption is used to define the level scheme of the investigated

nucleus. Bach level of the investigated nucleus is defined by a single

record. The input is as follows:

LEVE

1Py

a’ g’

B
; E
2
B

L I e B

IP .S

1
Ir_,8 a
3’IP3’83’ 3

0,0,0,0

Each record describes one level,the number of
records being equal to the number of levels of
the investigated nucleus to be included in the
calculations.

Terminates input to LEVE.

Is a user-given states number. Each nuclear
level will be referred to in the code by its
I value. By convention, index of the ground

state must be 1.

Can be given values of +/-1. Positive parity

is designated by +1 and negative parity by -1.

Is a floating point number specifying the spin

quantum number of the state.

Is a floating point number specifying the

excitation energy of the state in MeV.

The input to LEVE is terminated by four zeros.
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IV.14 OP,MAP

This execution option causes the calculation and storage of the maps of the
g-parameters (see Section IIT.2). Maps for Am = #1 transitions will be
calculated only if the inclusion of the magnetic substates was requested for
the approximate calculations by setting M,=1 in the input to EXPT. The maps
will be read correctly if the imput to EXPT is subsequently changed to M [, =0.

However, the maps will be read incorrectly if OP,MAP was executed with M =0
and subsequently M was changed to 1. The maps are stored on TAPE7 and read
from TAPE7. Both mlnlmlzatlon and error calculation require that TAPE7 is

attached to the job if OP,MAP was not executed during the same run.
No input other than the command is required for 0P, MAP.
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IV.15 ¥E (0P,CQUL)

Mandatory suboption of OP,COUL

This suboption of OP,COUL is used to input and catalog the matrix elements.
The suboption LEVE must precede ME since the catalog of matrix elements is

performed using the level scheme and state indices assigned using the LEVE

command.

The input is as follows:

ME

A,0,0 : Specify multipolarity A.

INDEX1,INDEX2,ME List of matrix elements for multipolarity A.
INDEX1,INDEX2, ME

INDEX1,INDEX2,ME

kl,0,0 Specify multipolarity kl.

INDEX1,INDEX2,ME List of matrix elements for multipolarity Xl.

INDEX1, INDEX2,ME
INDEX1,INDEX2, ME

0,0,0 Terminates ME input.

The matrix elements for each multipolarity are given separately.The set of
matrix elements for a given multipolarity is preceded by a single record
defining the multipolarity A, i.e.

' X,0,0 .
where A\=1 through 6 for El through E6 respectively while A=7 for M1 and A\=8
for M2. The ME data sets for each multipolarity must appear in increasing
order for A=1. through A=8. Unused multipolarities can be skipped in the

input. The matrix elements for each multipolarity are read in as
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INDEX1,INDEX2, ME INDEX# is the user given state number
as defined in the LEVE input

ME = <INDEX2||E(M)X||INDEX1> i.e., the reduced multipole matrix element
defined by equation 1.18

Note that the definition of reduced matrix element does not include the i+
term for the EA matrix elements used in the original Winther-deBoer
semiclassical Coulomb excitation code (WI66). The EA matrix elements are

given in units of e.barnsx/z i.e., e(10-28m2 %/2 The M)\ matrix elements are

given in units of pn.barnscl—l)/2

. Within a given multipolarity, only matrix
elements in the upper triangle, i.e. INDEX22INDEX1, should be given. Matrix
elements in the lower triangle are set by the program. Within a given
multipolarity both INDEX1 and INDEX2 columns must appear in increasing order
(odometer ordering). The header of the next multipolarity ends input for a

given multipolarity. A single record of 3 zeros ends the input to ME.

RESTRICTIONS:
Note that the sequence of matrix elements is uniquely set by the input
conventions. An error message will be printed and the job aborted if any of

the following restrictions are violated.

a. Multipolariaties must appear in order from lowest to highest starting
with EX and then MA.

b. Matrix elements must belong to the upper triangle, i.e.,
INDEX2 > INDEX1.

c. INDEX values must be in increasing order, i.e. odometer order.

EXAMPLE: An example of the use of the suboptions LEVE and ME for a gP, COUL

calculation is given below. Consider the following nuclear level scheme:
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The 2;-2; coupling is assumed to be of mixed Ml and E2 character. Definition

of this nuclear system should be as follows:

0P, TITL

Example of definition of nucleus

0P, COUL

LEVE

1,1,0,0 Ground state is given index *17.

2,1,2,0.500

3,1,4,1.000

4,1,2,0.750 :

0,0,0,0 Ends LEVE input.

ME

2,0,0 E2 patrix elements. All E2 matrix elements

1,2,1. '

1,4,1.

2,2,1.

2,3,1.
2,4,1.
..... 3,3,1.

4,4,1. .

7,0,0 A Terminates input for E2. Starts input for

equal to 1.0 e.barms.

INDEX1 and INDEX2 in increasing order.

o 0 0 0 O O 0

2,4,1 M1 matrix element equal to 1FN'
0,0,0 End ME input.
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IV.1€ ME (OP,GOSI)

Mandator? suboption of 0P,GOSI

This suboption of OP,GOSI is used both to input and to catalog the starting
set of matrix elements as well as to set constraints on the variation of
these matrix elements for the least-squares search procedure. The suboption
LEVE must precede ME since the catalog of the matrix elements is performed

using the level scheme and state indices assigned using the LEVE command.

Although similar in many respects, the input to the OP,GOSI version of ME is
more extensive than that required by the OP,COUL version of ME (Section IV~
15) . The OP,GOSI version of ME differs from the OP,COUL version in the

following respects:

a) Restrictions are placed on the range over which each matrix element is
allowed to vary during the least-squares search procedure. These
restrictions are used to prevent the code from finding unphysical
solutions. Moreover, these restrictions limit the range of coupling

coefficients ¢ over which the ¢-dependence of the g-parameters is fitted.

b) Specifications are given defining which matrix elements are to be
treated as free variables, and which are to be kept fixed or varied
conserving a preset coupling with other matrix elements. This allows a
reduction in the number of unknowns by using other knowledge such as
lifetime, branching ratio or multiple mixing ratio data to restrict the
number of free parémeters used in the least-squares search. Note that
lifetimes, branching ratios, multiple mixing ratios and E2 matrix
elements also can be included explicitly in the data set used for the
least-squares search (See OP,YIEL, Section IV.29). Restrictions on matrix
elements can be overridden by the OP,RE,A , OP,RE,C and OP,RE,F options
or, conversely, additional restrictions can be imposed using the FIX or

LCK command of the suboption CONT without changing the ME input. Input
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from the OP,G0SI version of ME requires a five-entry record.

A summary of the input format is a follows:

ME
AI,O,O,O,O v Specify multipolarity.
INDEXI,*INDEXZ,ME,RI,RZ List of matrix elements
' ‘ L 8 for multipolarity kl plus
B g " lower (Rl) and upper (Rz) limits.
XQ,O,IFz,O,O : Spes%fy multipolarity. o |
INDEX1,¢INDEX2,EE,R1,R2 List matrix elements for multipolarity kz'
] 2
AO, 0, 0 0, O Terminates input.

Matrix elements for each multipolarity are input as a set preceded by a
single record defining the multipolarity, i.e., X,0,0,0,0 A=1 through 6 from
El through E6 respectively, while A=7 for M1 and A=8 for M2.

Matrix elements are input as:

INDEXl,*—‘INDEX2,ME,Rl,R2 INDEX# is the user-given state number as
defined in the LEVE input.

ME=<INDEX2|lE(M)AlIINDEX1> The multipole matrix element defined by
' : equation 1.18. It is given in unmits of
e.ba.rnsl/2 for EN matrix elements and

pN.barns(]‘"l)/2

for MA matrix elements.
The sign assigned INDEX2 plays no role in
the definition of the matrix elehéit. A
negative sign signifies coupled matrix

elements as discussed below.

R and R The lower and upper limits,respectively,
between which the given matrix element
ME is allowed to vary. Obviously RQZRI.
Equality of R1 and Ra implies that this

given matrix element is kept fixed at the
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value ME. Note that in this case, i.e.,
R1=R2, R1 need not be equal to ME. For
example record 1,2,0.5,2,2 is equivalent to

1,2,0.5,0.5,0.5

Fixing matrix elements as in the first example is recommended because of
two features of the code. First, when an OP,RE command is used the limits
of fixed matrix glements are set as Rz=[R2i and R1=—[R2]. If fixing is done
as in the second example the matrix element will be allowed to vary only in
one direction i.e., between #0.5. Secondly, when fitting the gq-parameters,
the ¢-ranges are set according to the actual limits Rl’Rz' If fixed matrix
elements are released at a later stage in the analysis then there is less
risk of incorrect extrapolation if the approach used in the first example
is employed rather than later extending the limits without recalculating

the q-parameter maps. Note that neither R1 nor R2 should be exactly zero,

use a small number instead.

A negative sign assigned to INDEX2 specifies that the matrix element
defined by the pair of indices INDEX1, INDEX2 is not a free variable but is
a coupled one. In this case Rl and R2 are no longer upper and lower limits
but the pair of indices of the matrix element to which this matrix element
is coupled. The code automatically assigns upper and lower limits to the
coupled matrix elements using the upper and lower limits given to the one
to which it is coupled while preserving the ratio of the initial values of
the coupled matrix elements. These upper and lower limits calculated by the
code are used by the code if this coupling is subsequently released. The
ratio of coupled matrix elements set by the initial values is preserved in

the least squares search if the coupling is not released.
As an example consider the pair of matrix elements

1,2,2.0,-4,4
2,-3,1.,1,2

The second statement signifies that the matrix element connecting state 2

to 3 is coupled to the matrix element connecting states 1 and 2 in the
ratio
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M(2+3)

M(1°2) =+ 0.5

This ratio will be preserved in the least squares search if this coupling is
not released. Limits (Rl’Rz) of -2,+2 will be assigned by the code to the
matrix element connecting states 2 and 3. These limits are useful if the

coupling of these matrix elements is subseqﬁently released.

The convention of coupling matrix elements already described is valid only
within a single multipolarity. The coupling of matrix elements belonging to
different multipolarities is performed by using 100X + Ra ag input for the
index R3 of the "slave® matrix element where lambda is the multipolarity of
the master matrix element. The convention that A=7 for M1 and A=8 for M2 is
still valid.

An important restriction is that there can be only one "master® matrix
element with 2 number of slaves coupled to it if a group of matrix elements

are specified to be mutually related. For example, a valid sequence is

1,2,2.,-4,4 E2 set of matrix elements
2,-3,2.,1,2

\ @

2,-3,0.5,1,202 ¥l set of matrix elements.

This describes the coupling of both the M1 and E2 matrix elements of the 2+3
transition to the E2 matrix element connecting states 1 and 2. The E2
matrix element connecting states 1 and 2 will be treated as a variable, any
changes of this matrix element will cause appfopriate changes in both the M1

znd B2 matrix elements connecting states 2 and 3. An invalid sequence is

1,2,2.,-4,4 E2 matrix elements
2,-3,1.,1,2
2,-3,.5,2,203 M1l matrix elements

®
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This is invalid because it couples the M1 matrix element to the E2 métrix
element 2-3 which already is a "slave”, Coupling of a set of matrix elements
to a fixed one is allowed, it will simply fix the whole set. Nevertheless,

it is not allowed to fix the master matrix element using R

L:R‘ of a sign
ent,

For example use of the statement

1,2,2.0,-4,-4  will cause a flip of the signs of all
matrix elements coupled to the zbove matrix
element. The correct statement is:
1,2,2.0,4,4. Note it is useful to reiterate that it is
not necessary to change the ME input
in order to alter constraints etc. in the
fitting of matrix elements. The commands
OP,RE,A; OP,RE,C; and OP,RE,F can override
Some constraints introduced by ME setup,
while the FIX and LCK commands of suboption

CONT allow addition of new constraints.

RESTRICTIONS

Failure to comply with the following restrictions may cause erromeous

results or an error message will be printed and the job aborted:

-152-

o

N‘L’Ja
5

et

*

g

gy

‘g

Fen




.....

en

5wk
'

a) Multipolarities must appear in order from lowest to highest starting
with EX then M)\.

b) Matrix elements must belong to the upper triangle, i.e. INDEX1<INDEX2.
¢) INDEX values must be in increasing order, i.e. odometer ordering.
.. N
d) The limits RQ-RL.
e) Neither Hl nor Rz should be exactly zero.

£f) Do not set R1=R2 with a sign opposite to the matrix element if

couplings are made to other matrix elements.

To illustrate a typical input consider the example discussed in the previous
section, but here used under the OP,GOSI command. Let us assume that the
number of experimental data is insufficient to perform a completely model-
independent analysis. Then some model is used to couple all the diagonal
quadrupole matrix elements %o the O:-Z: transition matrix element. In
addition, the E2/M1 mixing ratio for‘the 2;-2; transition is fixed. The
sample input then will be as as follows:
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0P, TITL
NUCLEUS DEFINITION FOR OP,GOSI
0P, GOSI
LEVE
1,1,0,0
2,1,2,0.500
3,1,4,1.00
4,1,2,0.750
0,0,0,0

ME
2,0,0,0,0
1,2,1.,-2,2
1,4,1.,-2,2
2,-2,1.,1,2
2,3,1,-3,3
2,4,1,.01,5
3,-3,1,1,2
4,-4,1,1,2
7,0,0,0,0
9,-4,1,2,204
0,0,0,0,0

ground state is given index 1

ends LEVE input

E2 header

iree variable
free variable
coupled to 1+2
free variable
free variable
coupled to 1-2
coupled to 1-+2
ends E2 input, starts Ml input
coupled to 224 E2
ends ME input

In this example there are only four variables, i.e. the 1+2,2+3,1+4 and 274

EQ matrix elements. All the diagonal matrix elements are kept equal to the

E2 matrix element connecting 1+2, the same holds for the 2+4 Ml matrix

element which is equal to the 2+4 E2 matrix element.
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- IV.17 OP,MINI
(MINTMIZE)

This command causes execution of the least-squares fitting of matrix
 elements to the experimental data. Refer to Section III.5 for an explanation
of the procedures used for the least-square search. The starting set of
E matrix elements used by OP,MINI depends on the other option commands
specified. If OP,RAND is specified then OP,MINI uses the set of random

numbers generated by OP,RAND as the set of starting matrix elements. If

OP,REST is specified then the starting set of matrix elements is read from
- TAPE2. If neither OP,RAND nor OP,REST are specified then the matrix elements
input using the suboption ME are used as a starting set. Completion of an
Q0P,MINI command causes the set of matrix elements resulting from
pinimization to be written onto TAPE2. This current set can be used as a new
starting point for continued minimization. '

The OP,MINI command provides various switches to allow those
matrix elements satisfying certain criteria to be locked during the current
minimization procedure. This reduction of the number of iree variables can
greatly speed up the minimization procedure. The FIX command in the
- suboption CONT provides another mechanism for fixing matrix elements (see

Section IV.3).

i The input to OP,MINI comprises the title plus one record, i.e.

0P, MINI
TMODE, NPTL , CETLIM, CONV, TEST , LOCKF , NLOCK,, IFBL,LOCKS, DLOCK

vy

where:

g
i
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TMODE

Mode selector. IMODE should be defined as a four-digit
number IJKL where:

I=1 or 2. I=1 specifies that the fast approximation will
be used to calculate both § (Eq.3.24) and its partial
derivatives,

I=2 implies that S will be calculated using the full
Coulomb excitation formalism while its derivatives still
will be estimated using the fast approximation. I=1 is
reconmended for almost all applications. The time
required to complete the-minimization step using I=2 is
about an order of magnitude greater than when using I=1.
The use of I=2 should be reserved for small cases or for
cases requiring extreme accuracy in locating the
minimum. The TEST switch, described below, provides a

more efficient way of retaining high accuracy than I=2.

J=0 or 1. J=0 selects the simple steepest descent

minimization while J=1 selects the gradient and gradient
derivative method (see Section II1.5).

K=0 or 1. K=0 implies that the absolute changes in
matrix elements will be used to improve the minimum
while K=1 requests the use of the relative changes.
To first order K=1 corresponds to using the loga-
rithms of matrix elements ag independent variables

instead of the matrix elements themselves, as when
K=0.

L=0 or 1. L=0 specifies that the experimental yields,
branching ratios etc. will be used as dependent
variables to construct the S function while L=1

requests that a logarithmic scale will be used for
dependent variables.
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NPTL

CHILIM

CONY

TEST

There are no restrictions concerning the selection of
the above switches and any combination can be used.
Proper selection of IMODE can speed up the minimi-

zation procedure appreciably and is case-dependent
The maximum number of steps of minimization allowed.

The S criterion to stop mimimization. That is, the

minimization terminates if S < CHILIM.

The comvergence criterion to stop minimization when

|®, ,-B.|<CONV when H. denotes the vector of matrix
i+l 71 i

elements at the i-th step of minimization. This
convergence criterion also is used by the iterative
gsearch for the minimum along the gradieat direction.
This iterative procedure is stopped when the absolute
difference between two subsequent iterations is less
than CONV. Minimization may be resumed after the CONY
criterion is fulfilled if LOCKF=1 (see below).

Note: any of the above three criteria, namely NPTL,
CHILIM and CONV, stops minimization if fulfilled. The
LOCKF switch resumes minimization only when the
calculation was terminated because‘convergence was

achieved. A reasonable value for CONY is 107%,

Specifies recalculation of the internal correction
factors every time S drops by a factor of TEST. In the
1imit TEST<1 the internal correction coefficients

will be calculated at each step of minimization which
corrects for the discrepancy between the value of 3
calculated using the fast -approximation and S coming
from the full formalism. Note that this is faster than

using I=2 since only ome full calculation is required
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LOCKF

NLOCK

IFBFL

LOCKS

per step for TESTS1 whereas each sampling of the
minimized function during the one-dimensional search
along the gradient direction will require a full
Coulex calculation using the I=2 option.

Can equal O or 1. LOCKF=0 implies that minimization

will be terminated if the convergence limit CONV is

satisfied. LOCKF=1 causes the program to fix the NLOCK _

matrix elements having the most significant S
derivatives. This switch provides a different subspace
of matrix elements, this can be useful when trapped in
a local minimum or when the matrix elements having

weak influence on S should be allowed to vary.

As described in Section III.5, GOSIA will lock the
matrix element having the most significant S derivative
if the-search directions in two consecutive steps are

close to being parallel, even if LOCKF=0.

The number of matrix elements having the largest
derivatives of S to be locked if LOCKF=1 and the
convergence limit CONV is satisfied. See LOCKF.

Maf equal O or 1. If IFBFL=0 then the derivatives are
calculated using only the forward difference method
whereas IFBFL=1 causes the forward-backward difference
method to be used for calculation of the derivatives.
The IFBPL=1 option is justified only in the vicinity of
the minimum when the forward difference method may
produce spurious results since the IFBFL=1 option is a
factor of two slower than the IFBFL=0 option.

May equal O or 1. If LOCKS=1 then the code fixes, at
the first stage of minimization, all matrix elements Mi
for which the absolute value of the partial derivative
of S with respect to Mi is less than DLOCKS (the

gradient is always normalized to unity), i.e:
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123 < pLocks
3

This allows an automatic reduction of the number of

variables for which derivatives need to be calculated to

only those having a significant influence.

LOCKS=0 switches off this option.

™ DLOCKS Specifies the limit of the derivative below which a
matrix element will be fixed if LOCKS=1.

ko
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IV.18 OP,POIN
(POINT)

This option command causes éxecution of a calculation of the 7-ray yields
for one scattering angle and one bombarding energy as specified for each
experiment in EXPT. OP,POIN can be used to simulate ’corrected’ experimental
7 yields. In this mode OP,POIN also generates a ’corrected experimental
yields file’ on TAPE4, which can be used subsequently for

simulating the real experiments (e.g. to analyze the influence of the matrix
elements on the supposedly observed yields). Note: when executing OP,POIN

one should set experimental yields file selector (NTAP in OP,YIEL input) to
0 - see IV.29.

The input to OP,POIN is as follows:

OP,POIN

IFL,YLIM IFL=0 specifies the normal calculation, IFL=l the
’simulation’ calculation. YLIM is redundant if IFL=0,
for IFL=1 it specifies that all transitions whose
yiéld divided by the yield of the normalizing
transition (defined in OP,YIEL) exceeds YLIM will
be treated as ’experimentally observable’ and will
be included in the TAPE4 file. OP,POUIN will also

| produce a file containing 7 detector efficiency

information if OP,RA¥ was executed and PRT, flag 20
was set to 1 (TAPE23). Note that the decay energies
in TAPE23 output are Doppler-shifted.
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IV.19 OP,RAND
(RANDON)

This option generates a set of random matrix elements which replaces the set
defined previously for the current job. Each matrix element in the random
set is created assuming a uniform distribution of random numbers lying
between the limits specified for each matrix element in the imput to ME.
This option is used to eliminate bias in the analysis and to test the
uniqueness of a the least-squares fit to a given data set by retrying the

minimization starting from a number of sets of random matrix elements.

The input requires only one number:

SEED A floating-peint seed number for the internal random
number generator. SEED should be larger than umity and
less than 32000.
Note that FORTRAN random number generators
are reproducible, giving the same sequence of random
numbers when called. Therefore SEED should be different

for repeated runs, otherwise the results will be

identical,
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IV.20 OP,RAW

This option allows to define y-intensities for some, or all, experiments as
"raw?, i.e. not detector efficiency-corrected. In addition the raw v
intensities can be summed over a set of 7 detectors. This feature is
important when analyzing data from multidetector arrays (crystal balls).
Spectra from the 7 detectors symmetric with respect to the recoil direction,
identically Doppler-shifted, can be added to increase statistics and to
reduce the number of datasets to be processed (such sets of data will be
referred to as "clusters"). GOSIA can handle such data provided that the
efficiency calibration of the individual detectors is input. This
information should be given using OP,RAW. OP,RAW should be executed if at
least one experiment involves raw data or clusters. O0P,RAW should
immediately follow OP,YIEL (IV.29). If OP,RA¥ is to be used the first entry
of OP,GDET (IV.10) should be negative to produce additional file, TAPES,
required by OP,RAW. Do not use OP,RAW if 2ll 7 intensities are efficiency-
corrected.

Energy-dependent efficiency calibration for each individual 7 detector
is assumed to follow a functional form used by the code GREMLIN (see
Appendix), available on request from NSRL.

The imput to OP,RAW is as follows:

TEXP Number of experiment to be labeled as raw (according to
the sequence of CONT suboption EXPT).
Al,A2,...4A8 Parametrization of efficiency curves for all 7 detectors
Al,A2,...A8 used in experiment IEXP. Parameters Al through A8

correspond to a0,al,22,a3,f,N,b,c, as defined in

. Appendix. Use =0 to switch off F factor and c¢=0 to
switch off W factor. These sets of parameters should
be ordered according to the sequence of "logical® v
detectors, as defined in OP,YIEL (IV.29) input. Doppler

shift of the 7 energies is taken into account.
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Al,A2,....A8
NC Number of clusters.
D1 Number of 7 detectors for cluster #1.

I1,12,...I1(ID1) Indices of "logical® detectors forming cluster #1,
. according to the sequence defined in 0P, YIEL.
0 : IEXP=0 ends input.

The sequence ID1... should obviocusly be repeated NC times to define every
cluster, unless NC=0 (no clusters). The whole input is to be defined for
every raw experiment.

The use of OP,RAW imposes an important constraint on how the experimental 7
yields should be ordered in either TAPE3 or TAPE4. The sequence of 7 yields
data sets should follow the HIGHEST "logical® detector index within a
cluster. Single detectors can be handled as if they were one-detector

clusters, without labeling them as clusters.
Example:

Three 7 detectors were used and the spectra from the detectors labeled 1 and
3 in OP,YIEL assignment were added. In this case there are two clusters,
namely composite detector 1+3 and single detector 2. The imnput to 0OP,RAW
should then be as follows:

0P, RAV

1 experiment #1 labeled as raw
Al....A8 for logical detector 1
Al....A8 for logical detector 2
Al....A8 for logical detector 3

1 one cluster

2 two detector in this cluster

1,3 logical detectors forming this cluster
0 ends OP,RAW input

In this case the experimental 7 yields from detector 2 should precede these
from 1+3 cluster ( highest logical detector index for the data from detector
2 is 2, while for 1+3 cluster it is 3).
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Iv.21 O0OP,RE,A
(RELEASE, A)

This option voids all coupling of matrix elements and releases fixed .ones.
As described in ME (Section IV,lS) matrix elements are fixed by specifying
identical upper and lower limits R1=R2. When a fixed matrix element is
released these upper and lower limits are set equal to -|R2| and {R2],
respectively. Consequently, it is useful to use [R1|=[R2|>|ME| when fixing
matrix elements to ensure that the released matrix element can be varied

within an appropriate range.

IV.22 OP,RE,C
(RELEASE, C)

This option releases fixed matrix elements but retains the couplings of

matrix elements. No additional input is required.
As described in IV.16 and IV.21, when fixed matrix elements are released the

upper and lower limits are set equal to |R2| and ~|R2|, respectively.

IV.23 OP,RE,F
(RELEASE, F)

This option voids the coupling of matrix elements but retains the fixing of
matrix elements. No additional input is required. As described inm section
IV.16, the upper and lower limits assigned to 2 coupled matrix element onm
" its release are calculated from the corresponding limits assigned to the

master matrix element using the ratio of initial values of the coupled

matrix elements.
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IV.24 OP,REST
(RESTART)

This option causes a set of matrix elements to be read from file TAPE2 which
then replaces the set defined by the imput to ME for the current job. This
option enables continuéﬁion of a minimization or performing any other
operation using the latest set of matrix elements instead of the one
appearing in the ME setup. Note that each OP,MINI command causes its final
set of matrix elements to be written on file TAPE2.

OP,REST provides a possibility to manually overwrite some of the
matrix elements stored on TAPE2 for the current job. This feature can be the
useful time-saver when, for example, better estimates of some matrix
elements have been found during a preliminary diégonal errors calculation.
The input to OP,REST should be given as:

0P ,REST

Il,Vl Index of the matrix element ( according to

Iz’ya the sequence of ME ) to be overwrittean { I )
and its new value (V).

0,0 Two zeros terminate input. A sequence:

OP,REST

0,0 leaves the values stored on TAPE2 unchanged.
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IV.25 OP,SIXJ

This stand-alone option creates a 6-j table to be used by the guadrupole
sum~rules program SIGMA ( see Chapter V ). OP,SIXJ is not related to an
investigated nucleus, thus it can be inserted anywhere in the input stream,
even as the only option command. The cutput is written to a file TAPE1l4. No
further input is required. o

Note: The execution of OP,SIXJ will cause GOSIA to stop the job
after the 8-j symbol table has been written. The remainder of the imput will
be ignored.
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IV.26 OP,STAR
(START)

Execution command to calculate Coulomb excitation amplitudes and
probabilities, not the 7-ray yields, at the energy and scattering angles
specified in the EXPT input. This comprises a subset and consequently an
alternative to OP,POIN. The 0OP,STAR requires no input. ‘

Note that OP,STAR is ( besides the 0P,SIXJ and OP,GDET commands)
the only executable option which does not require the 7-ray deexcitatiocn
related information provided using OP,YIEL and thus can immediately follow
0P,COUL or OP,GOSI commands.
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IV.27 0P, TITL
(TITLE)

This option requires ome input record consisting of up to 80 alphanumeric
characters. This string is reprinted as a run title. OP,TITL should appear
as the first option command, or follow OP,FILE command if used, since
execution is immediate. Otherwise, the title will not appear as a header of

the output. OP,TITL can be skipped. If more than one title line is wanted
this command can be repeated as many times as desired.
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IV.28 OP,TROU
(TROUBLE)

This troubleshooting option can be used to pinpoint erroneous experimental
data and to check if the minimization is trapped in a local minimum. As
described in detail in section III.7, this module analyzes the contribution
to xz of ﬁhe deexcitation 7-ray yields to ascertain if there is an
inconsistency in the data. The parameter r defined in equation 3.71 is a
measure of the conmsistency of the data. That is, it identifies if the
current minimum of xz, with respect to a given matrix element, results from
cancellation of large and opposite contributions due to inconsistent data

or whether all the data are conmsistent.

The input consists of one record:

NS,RL NS is the number of experimental yields giving the
largest positive and negative components of the
derivative of xa with respect to a given matrix element
to be selected and printed out. This information will
appear in the output if for this given matrix element

r, exceeds RL. y? function is defimed by Eq. 3.69.

NOTE: 1) OP,TROU must be the last option before 0P,EXIT
2) 0P,TROU must be used in conjunction with the
yields sensitivity map, i.e. print control para-
meter IPRM(4) in CONT (Section IV.3) must

assupe its default value equal to -2.
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IV.29 OP,YIEL
(YIELDS)

This option is mandatory if it is desired to calculate the yields of
deexcitation y-rays following Coulomb excitation. The first part of this
option is used to input the internal conversion coefficients and the
description of the y-ray detectors. This first sectiosn is used in
conjunction with either OP,COUL or OP,GOSI. The second part of this option
is used in conjunction with OP,GOSI to input additional information required
for the least-squares fitting such as normalization constants, 7Y-ray
branching ratios, lifetimes, E2/M1 mixing ratios and diagonal or
transitional E2 matrix element data to be included in the fit. The input to
0P,YIEL must be complete and consistent with the option of the code
selected.
0P,YIEL defines the "logical" 7 detectors, which are referred to
‘everywhere in the input except of OP,GDET. Different logical detectors may
be in fact the same "physical" ones. This distinction allows to reduce the
number of experiments defined in all cases the setup used is symmetric with
respect to the beam axis. As an eiample, let us consider the experiment in
which two particle detectors are placed at symmetrically to the beam axis at
angles (6,4) and (8,4+7), respectively. Gamma rays are detected in
coincidence with scattered particles in one Ge detector placed at position
(9g,¢g), so the scan of event-by-event data yields two 7 spectra. A
straightforward approach is to define two experiments, differing only by the
placement of the 7 detector with respect to the scattered particles.
Instead, one can define only one experiment (keeping in mind that the
Coulomb excitation depends on £, but not on ¢) and two logical detectors,
one at (9 ,¢ ) and another at (9 ,¢ +m). Both are identified as the same
physzcal" detector, but dlfferent sets of 7 yields (both spectra resulting
from the scan) are assigned to them. Such a manipulation saves almost 50% of
CPU time since evaluation of deexcitation 7 vields requires negligible
computation time compared to the excitation calculation.

GOSTA allows also to define logical detector clusters (see OP,RAW-
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IV.20), i.e. sets of 7 yields which result from summing the raw spectra,

=, therefore the number of experimental data sets is not always equal to the
o number of logical detectors. Further description will refer to the "logicall
El detectors simply as 7 detectors, which should be distinguished from either
i fphysical® detectors or data sets.
, § A resume of the input to OP,YIEL is as follows:
0P, YTEL
:ﬁ; IFLAG Assumes the values of O or 1. IFLAG=1 means that the
‘ correction to the angular distribution of the 7-rays
| due to a finite distance traveled by the decaying
nucleus will be included in the calculation (see
) Section III.3). IFLAG=0 switches off this correction.
N1i,N2 Number of energies (N1) and multipolarities (N2) to
define the internal comversion coefficients.
El’Ez" ’EN1 Energy meshpoints for internal conversion coefficients
(in ¥eV), common for all multipolarities.
11 ‘Multipolarity Il.
¢C(I1,1)..CC(I1,N1) Internal conversion coefficients for multipolarity Ii
- ‘ at each energy meshpoint (N1 entries).
| 12 This sequence should be repeated for all multipolari-
. €C(I2,1)..CC(I2,N1) ties defined, i.e. N2 times. ‘
NANG(T) . .NANG(NEXP) Number of v-ray detectors for each of the NEXP
experiments. NANG(I) can be entered as its true
value with a negative sign, which means that the
7 detector setup is identical to that of the
o ~ previous experiment, for example if the experiments
- | differ only by the scattering angle. In this case the
ot next three records need not be entered.
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IP(1)..IP(NANG(I)) Identifies the 7 detectors used in a given experi- e
ment according to the sequence the ?physical? ‘
detectors were defined in the imput to OP,GDET e
(Section IV.10). For example, if IP(L)=K, then
it is understood that the L-th detector used in the

. =
current experiment is the K-th detector defined in ?
the OP,GDET input. This assignment of "physical® )
detectors to the "logical® ones is the only inmstance
the "physical" detectors are referred to. Everywhere
else the 7 detectors are the "logical’ detectors. il

61""9NANG(I) § angles for 7 detectors used in experiment I. =

¢1"“'¢NANG(I) ¢ angles for 7 detectors used in experiment I. -

The above sequence, starting from the definition of IP should be repeated

for each of NEXP experiments defined, except of the experiments for which

NANG is negative. The experiments must be ordered according to the sequence .

they appear in EXPT input. )

NS1,NS2 The transition from NS1 to NS2 to be used as the -
normalization transition where NS1 and NS2 are the E
state indices. 1

End of input for OP,COUL. The remainder of the input is required only if
0P,GOST was specified.
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NDST
UPL_...UPL
1 n
YNRM_...YNRM
1 n
NTAP
NBRA, WBRA

I1,12,13,I4,B,DB

NL, WL
INDEX,T,DT

NDL, WDL

1S,IF,DELTA,ERROR

Number of data sets in experiment 1. Usually equal to
NANG(1), unless detector clusters were defined in

0P, RAW |
Upper limits for all 7 detectors used in experiment 1.
Relative normalization factors of 7 detectors used in
experiment 1.
The above three records should be repeated for all
experiments according to the sequence of EXPT, except
for those assigned the negative value of NANG.
Subscript n=NDST denotes the number of data sets.

Specifies file containing experimental yields. NTAP=0
is used when this file is not necessary, e.g. when
running OP,STAR or OP,POIN under OP,GOSI. Otherwise
NTAP=3 or 4 corresponding to file TAPE3 or TAPE4, res-
pectively. NTAP must equal 3 if OP,CORR is executed
and must equal 4 if 0P,ERRO is executed.

Number and weight of branching ratios.

NBRA records of branching ratios.

11+I2/13+I4 = B=DB

where I1,I12,I3,I4 are state indices, B is the

branching ratio with error DB.

" Number and weight of mean lifetimes.

T+DT is the mean lifetime of level INDEX,

NL records, lifetimes in picoseconds

Number and weight of E2/M1 multipole mixing ratios.

5 B2 (IS+IF) = DELTA * ERROR
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NDL records

NAMX , WAMX Number and weight of known E2 matrix elements.
I1,I2,ME,DME ME«DME is the E2 matrix element (units e.barns)
. . ) and error for the transition I1-+I2 (T1£12).
e . NAMY records.

The known E2 matrix element data end the input to OP,YIEL when OP,GOSI has
been selected. 7%

A more detailed description of the input is presented below:

IFLAG Determines whether the effect of the finite

distance traveled by the decaying nucleus on

- l;!\c\‘la

the 7-ray angular distribution is to be
included (IFLAG=1) or not (IFLAG=0). This
eifect, taken into account as a first-order
correction (sée Section III.3), is important
only for the long-living states and should nct
be included in the cases where all the life- =
times are supposed to be in the submanosecond
range to speed up the calculations. Also, e
the first-order correction may be inhibited
if it is necessary to ch;nge the sign of some

matrix elements, in which case the lifetimes

calculated during the mipimization may assume
unreasonable values if the matrix elements

determining the lifetime of a level happen to

&R

P

be close to zero during the search procedure.
In such cases GOSIA will automatically reset
IFLAG to O if IFLAG was input as 1. It is -
recommended to use IFLAG=1 only at the final
stage of the minimization, when the signs of v
the matrix elements are already defimed.
IFLAG=1 should not be used in conjunction
with OP,RAND.
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N1,N2

'ENz

N1 is the number of energies used as
meshpoints for input of the internal
conversion coefficients. Energy meshpoints
are presumed to be identical for each
multipolarity. At least one point below the
lowest transition energy and one point above
the highest are required for reliable
interpolation of internal conversion
coefficients. Use a reasonable range of
internal conversion coefficients to ensure a
reliable interpolation. Check the interpolated
values at least once by requesting the print-
out of internal conversion coefficients (refer
to print controls described in Section IV.3).
Note that the Lagrangian interpolation used
is not able %o take into account the discon-
tinuities which may be present at low 7
energies due to the cutoff edges. Since the
interpolation uses two points om both sides
of the‘decay energy, make sure that the dis-
continuity is separated from the closest
decay energy by at least one meshpoint. This
assures that the interpolation "sees® the

monotonic dependence.

N2 is the number of multipolarities for which
internal conversion coefficients ars given.
This must be consistent with the number of
multipolarities used for the matrix element

setup in ME.

Input of the energies used as meshpoints for

the internal coaversion coefficients. Units

of MeV.
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c¢, (I1),CC,(11),..CC, (T1)

NANG(1) .. .NANG (NEXP)

IP(1),IP(2)..IP (NANG(I))

6(1),6(2),...0 (NANG(I))
¢(1),¢(2),...¢(NANG(T))

Multipolarity of the internal conversion "?
coefficients. Il=1.. 6 for El1...8
respectively. I1=7 for M1 and 8 for M2.

o
Internal conversion coefficients for -
multipolarity Il at the energy meshpoints :
given above. Repeat the multipolarity, I1, .
and internal conversion coeffient records CC
for all N2 multipolarities. B
NANG is the number of ¥ detectors for each
experiment. NANG is limited to <200. "

In many cases, a series of logically different
experiments is in fact performed during one e
"physical® run, for example when position-
sensitive parallel-plate particle detectors
are used, providing the data for a wide range
of scattering angles. For this type of
experiments the physical setup of the 7 detec-
tors remains unchanged, therefore repeating

the 7-detector related input would be &

il

redundant. To reduce the unnecessary input,
one can enter NANG(I) as the true value of the e
7 detectors used with a negative sign. It
will be understood that the 7 detector setup
is the same as for the previous experiment
in the EXPT input sequence. In this case the
next three records should not be input.

The definition of the ‘physical® 7 detectors
used in an experiment I according to the

sequence of 0P,GDET.

The angular coordinates (6,¢) in degrees

2
- "ﬁ 2

of each 7 detector in the same coordipate
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frame as used for the EXPT input for this

= ' experiment.
, The z axis always is in the direction of the
M incident beam. It is recommended that for each

experiment the 7-ray detector giving the best
quality data be selected as detector number
one. This is because only 7-ray detector
number one is taken into account for certain
features of the code, namely, genesration of
the yield sensitivity maps, i.e.

e 31n (YIELDS)
CtaamE)

" and the consistency tests performed by the
troubleshooting routine OP,TROU.

The sequence of input records starting from the definition of IP must be
repeated for all experiments I=1,NEXP as defined in EXPT input, unless NANG

is negative for a given experiment I.

NS1,NS2 The transition from the state with index NS1
to the state with NS2 is chosen as a
normalizing transition. Make sure that the
energy of state NS1 is higher than that for
state NS2. The transition is common to all
B experiments. It is used for setting upper
limits of unobserved y-ray transitions and for

‘printout compiled by OP,POIN.
The input to OP,YIEL required by O0P,COUL ends at this point. The remainder

of the input is related to the least-squares fitting and needs to be entered
only for 0P,GOSI.
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NDST

UPL_ ...UPL
1 n

YNRMI...YNRM

Number of data sets, equal to the number of
7 detectors if no detector clusters were
defined in OP,RAV. NDST<32, while up to 20

clusters per experiment can be defined.

The number of entries in each record

corresponds to the number of data sets for
each experiment defined, i.e. n=NDST.

The sequence of these tﬁo records should be
repeated for al] experiments according to the
sequence in which the experiments appear in
the EXPT input. ,

These three records should not be input if
NANG(I) is negative.

UPLi is the y-ray yield upper limit for
detector i for unobserved transitions taken
relative to the normalizing transition NS1+NS2
selected by the previous record. If the
calculated yield of any unobserved 7-ray
transition, divided by the yield of the
normalizing transition, exceeds UPL, then it
is included in the calculation of the least
Squares summation used for the fit.

Otherwise, the many transitions which are
below the limit of detection by a particular
experiment are not included in the least

squares fit procedure, (See Section III.6).

YNRMi is the relative normalization factor
for detector i used in experiment IEXP. GOSTA
does not require the absolute normalization
for a given experiment, instead, the code
finds itself the best normalization constant
correlating calculated and experimental v
yields. For each 7 detector i used in
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experimeat IEXP the calculated and

experimental 7 yields are correlated by:
exp_y cale
Yi "Yi #Ci(IEXP)

where Ci(IEXP) is the normalization constant
for experiment IEXP and detector i. The code
fits the common normalization factor for all
7 detecters used in a given experiment IEXP,
C(IEXP), related to the individual ¢
detectors’ normalization factors Ci(IEXP) by:

C, (IEXP)=C (IEXP) «YNRM, (IEXP)

Different experiments may have known relative
normalization, e.g. when different projectile
scattering angle slices are defined as experi-
ments. In this case the physical setup, i.e.
the location of 7 detectors etc. is the same
for a whole group of experiments and their
relative normalization is set only by the
Rutherford cross sections and the efficiencies
of the particle detectors for specified
scattering angle ranges. The known relative
normalization may be used by specifying the
proper LN indices in the EXPT input, then the
code will use a given YNRMi(IEXP) values to
fit the common C(IEXP) value for the whole
subgroup of experiments, the definition of

C, (IEXP) for individual 7 detectors remaining
the same. Note that it is possible to

request independent normalization for each
individual ¢ detector by using the CONT switch
INR,. In this case the YNRM input is
redundant.

The normalization constants calculated using
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user-supplied information are printed by the
code’ along with the recommended relative YNRM

values calculated independently for each v
detector.

Consider the example of *2Ge discussed in the description of EXPT (see
section IV.8). Assume that there are two 7-detectors for each experiment and

that a correction needs to be made to the detection efficiency of the second

detector. An‘input of the form:

2
0.05,0.10
1,0.7

2
0.02,0.03
1.,0.6

means that unobserved transitions will contribute to the least-squares sum

when their calculated yield intensities exceed:

EXPT # 7—Détector #

5% of normalization transition
10% of normalization transition

2% of normalization transition

B BN e
N - B s

3% of normalization transition

and the normalization constants are:
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NTAP

EXPT #

B BN b

v7-Detector #

DO b2 DY =

Cl calculated by the code
0.7 » C1 .

02 calculated by the code
0.8 = C2

Specifies the number of the file on which

the experimental yields reside. NTAP can have
values of 3 or 4 corresponding to TAPE3

or TAPE4. The file of original experimental
yields is modified to correct for the
difference between full Coulomb excitation
calculations, 4ntegrated over detector solid
angles and target thickness, and point.
calculations at fixed gcattéring angle and
incident enmergy. This modified file of
experimental data is used for the least
squares minimization and error estimation

in conjunction with point calculations.

This correction is performed by the OP,CORR
command (see Section ITI.4 aad Section IV.4)
which reads the unmodified sxperimental yields
from file TAPE3 and writes the corrected
experimental yiels in TAPE4. Consequently,
NTAP must equal 3 when OP,CORR is used.

The least-squares minimigation and error esti-
mation teénire the corrected yields. In this
case, NTAP should be consistent with the file
assignment given in the computer control
statements preceding this program.

NTAP must equal 4 when OP,FRRO is executed
with the CONT SMR, switch bscause TAPE3 is ‘
then reserved for the output needed by the
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NBRA, WBRA

11,I2,13,14,B,DB

quadrupole sum-rules program SIGMA.

NTAP may equal O when experimental yields are
not required, e.g. when running OP,STAR or
OP,POIN under OP,GOSI. NTAP=0 implies that the
code will not attempt to find and read in the
experimental yields file.

Are the number of experimental branching
ratios to be input and weighting factor,
respectively. A maximum of 50 branching
ratios can be input. If NBRA=O then no
further input of branching ratios is required.
The weighting factor, WBRA, is defined for all
the branching ratios used in the least-squares
summation. Thus, normally WBRA=1.0. It can

be helpful, during minimization, to switch off

. (WBRA=0) or reduce the weight of the branching

ratio data to eliminate a problem caused by
trapping of the search in the narrow valleys
resulting from accurate branching ratio data.
For example, branching ratio data can cause
the search to be trapped in a solution having

the wrong sign for a given matrix element.

If NBRA is not zero then the inmput is as
follows:

Repeated NBRA times

where I is the level index specified in the
LEVE input. The branching ratio B with error
DB is defined by the ratio of T-ray
intensities:
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INDEX,T,DT

NDL, WDL

Are the number of experimental mean lifetimes

to be input and the weighting factor. NLS10.

"If NL=O then no further lifetime records need

to be input. The weighting factor,WL, is used
for all the lifetime data in the least-squa-
res summation. Normally, WL=1. The weighting
factor can be set to a smaller number or zero
if it is desired to reduce or switch off,
respectively, the influence of the lifetime

data.
NL records

INDEX is the index of the level, specified in
the input to LEVE. T is the mean lifetime,

in picoseconds (10-1zse;s), of the level.
Note, it is not the half-life T1/2=ln(2.)*T.
DT is the error of the mean lifetime in

picoseconds.

Are the number of experimental E2/Ml mixing
ratios to be input and the weighting factor.
NDL<20. If NDL=O no further mixing ratio
records are required. The weighting factor,
WDL, is used for all the data points in the
least-squares summation. Normally, WDL=1.0.
WDL can be made smaller or zero to reducs or
switch off the influence of the mixing ratio

data.
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23
EE

IS, IF,DELTA,ERROR

.. . NDL records of mixing ratios

DELTA is the E2/M1 mixing ratio for ]
the transition from level IS to level IF.

It is defined as:

_...%q

B2 CIF| |M(E2) | IS

Note that the phase convention is that of Krane [KRA70]. See [KRA70] for a %§
discussion of the various phase conventions. ERROR is the error in the “
mixing ratio. Note the error is assumed to be symmetric to assure ey

continuity of the least squares function. NV E -

s, - .
2 B R
s R B

NAMX , WAMX The number of experimentaltEQuﬁatfix elements

(NAMX) to be input and the weighting factor
(WAMX) . If NAMX=0 no more input is required.
The weighting factor, WAMX, is common for all
the matrix elements used in the least-squares
sumnmation. Normally WAMX=1.0. WAMX can be
made smaller or zero to reduce or switch off

qﬂ%h”ﬁﬁé‘in%luence of these additional data,

L NAMXS30: et

SN

R

INDEXl,INDEXa,ME,DME Repeat NAMX times. Vi
. INDEXn.is the level index. Note the
. . . restriction INDEX1 < INDEXZ, ME is the E2
matrix element, in units e.barns, while DME

is the error, assumed to be symmetrical. In

el

the fit procedure the sign of ME is ignored
if INDEX1 is not equal to INDEX2.

The input of known E2 matrix eléments concludes the input to OP,YIEL. The

experimental deexcitation 7-ray yields are input separately as described in
Section IV.30.
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TV.30 INPUT OF EXPERIMENTAL 7-RAY YIELDS FROM COULOMB EXCITATION

The experimental 7-ray yields from the Coulomb excitation experiments are

supposed to reside on a separate £ile being either TAPE3 or TAPE4. The

structure of the file is as follows:

IEXP,NG,ZP,AP,EP,ND,WT

NG

Ay

This header record appears before the
experimental yields for each experiment

and data set.

This is the experiment number. The

experiments must be input in the same
order as used for EXPT and OP,YIEL.

Number of data sets for experiment IEXP.
NG is equivalent to the OP,YIEL NDST.

Charge number of the projectile.
Mass number of the projectile.
Bombarding energy of the projectile (MeV).

Number of experimental 7-ray yields to be in-
put for the specific IEXP and data set.

The weighting factor assigned to a given
data set (see Eq.3.25). Normally WI=1.0.
This weight factor can be made less than one
or zero to reduce or switch off respectively

the influence of this particular data set.

All the entries of the header, except WT and ND, are used only for reprint
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of experimental data, therefore using the values defined in EXPT and OP,YIEL
inputs is not strictly required. Nevertheless, it is recommended to enter
IEXP,ZP,AP,EP and NG according to the previous definition to make sure that

the sequence of experimental yields is correct.

Each header should be trailed by ND records for that particular

experiment and data set. The format is:
II,IF,Y,AY

where:

IT Initial level index.
IF Final level index.
Y,DY The arbitrarily normalized y-ray yield

for transition IT+IF with absolute

experimental error =AY.

For unresolved doublets, consisting of the II1+IFl transition plus the
II2+IF2 transition, the input format is: (100xII1+II2), (100%IF1+IF2),
Y1+Y2, A(Y1+Yz) where: '

ITy, 112 Are the initial level indices for tramsition
1and 2. .

IF1,IF2 Are the final level indices for transition
1 and 2.

Y1+Y2,D(Y1+Ya) Is the summed yield of the unresolved trans-
itions IT1+IF12 and II2+IF2 with error
2A(Y1+Ya).

There are no restrictions regarding the sequence of the experimental data
within the single data set. Data sets within an experiment should be ordered
according to the highest logical detector index. If no clusters are defined

(see OP,RAW) this is equivalent to ordering the data sets according to the
sequence of logical detectors defined in OP,YIEL.

-186-

’ s !




b
E

,,,,,

V. QUADRUPOLE SUM RULES - PROGRAM SIGMA

The heavy-ion induced Coulomb excitation allows to measure essentially full
sets of the B2 matrix elements for the low-lying states of the nuclei. It is
Lnterestlng to ascertain to what extent these sets of data can be correlated
using only a few collective degrees of freedom. The quadrupole sum rules
[CLI72, CLI88] have been proven to be a powerful tool for extracting the
collective parameters from the wealth of data produced by the Coulomb
excitation. This procedure, outlined below, is completely model-independent,

thus being specially suitable to be used on the data also obtained without
recursion to the models. Conversion of the E2 matrix elements to the
quadrupole invariants is performed by the separate code, SIGMA, which uses
the information stored by GOSIA on a permanent file during error

calculation. b

V.1. FORMULATION OF THE QUADRUPOLE SUM RULES

The electromagnetic multipole operators are spherical tensors and thus zero-
coupled products of such operators can be formed which are rotationally
invariant, i.e., are identical in any instantaneous intrinsic frame and the
laboratory frame. Let us, for practical reasons, consider only the E2
operators. We can always define an instantaneous "principal® frame in such

a way, that:

E(2,0)=Qcosé
E(2,1)=E(2,-1)=0 5.1
E(2,2)=E(2,-2)=1/V2 ° Qsind

where Q and & are the arbitrary parameters, identical to Bohr’s (B,7) with
recursion to the model, but in general completely model-independent. Using
this parameterization the zero-coupled products of the E2 operators can be

formed in terms of § and 6, e.g.:
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[e2 x £2]% 1= ¢
5.2 .
2 0_v2 .3 .
{[E2 x E2]° x E2} = 735 9 cos36 & |

which are the two lowest order products. It is straightforward to form any
order product, the limit being set only by practical feasibility. On the ‘
other hand, one can evaluate the matrix elements of the E2 operators NQE

products by recursively using the’ basic intermediate stata expansion:

=
Is+Ir o
¢s|(E2 x B2)Y|r> = L1 775 L <slB2]|ecs] [B2] o> (2 2] 5.3 o
(2IS+1) t st C
which allows to express the rotational invariants built of @ and § as the -
sums of the products of the reduced E2 matrix elements using the
experimental values of these matrix elements. As an example, an expectation
value of Qz can be found directly using 5.2 and 5.3:
Qz = “—-lé—"f7§ <s|| (B2 x EZ)o}ls> = o
(2T _+1) .
s ‘
5.4 -
ZIS : '
D s gy oy (220,
(2I3+1)1/2 ; ST rs ISISIr §%
where the shortened notation for the matrix elements: Uéﬁ
Msr = <s{| E2 || . ' 5.5 ;;
. L 220. . . o
is used. The Wigner’s 6-j symbol {I II } is equal to ( [ROTS9] ): :
sTtr
I +I
220 s r 1 1
{ } = (-1) T ——— 5.8
ISI Ir v5 (2Is+1)1/2 IsIt

The 6-j symbol 5.8 appears frequently in the sum rules and its simple

e
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analYtiC forn makes possible the simplification of the formulas resulting
from the intermediate state expansion. The general phase rule for the

reduced matrix elements Mrs can also be used to further simplify 5.4:

J -J

s r
M= (-1) M__ 5.7

Tt can be easily seen that by inserting 5.6 and 5.7 into 5.4 one gets:

2 __1 2
v = 2I_+1 L ST 5.3
The similar evaluation of Q3c0535 yields:
3 _ ~ _¥35 1 222
QPcos3s = ¥ —5 7T % U Mo M {IsItIi 5.9

where a negative sign corresponds to the integral spin system, while a
positive sign corresponds to the half-integral spin system.

The higher order sum rules can be formed with the different J
couplings, involving summation over the different sets of the reduced E2
matrix elements. This provides an important test for the self-consistency of
the E2 experimental data, as well as for the convergence of the sum rules
themselves. It is estimated [CL186] that about 90% of the non-energy-
weighted E2 strength is contained within the low-lying, and thus Coulomb
excitation accessible, level structure. The missing strength is primarily
due to the giant dipole resonance which we have neglected so far. Assuming
that this missing strength can be neglected ome can expect that different J
couplings should yield the similar results for the rotatiomal invariants.

Practically, however, the finite level system used in the analysis and the

_finite coupling scheme will result in the discrepancies between different J-

coupled sum rules giving an estimate of the completeness of the data used.
The simplest sum rule involving the differemt J coupling is given by the

fourth-order product related to the expectation value of Q*:

P4(J) = <s|{(E2 x EZ)J x (E2 x 32)5}°[S> =

1/2 I -I
- (23+1) 22J, 227 s ir
2T +1 L Mgy Mep Moy Mg € rli {IsIrIz (-1) 5.10

Three independent estimates of Q4 can be evaluated using P4(J) for J=0,2,4:
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0*(0) = 52%(0) P
*2) = 22 pha) 5.11 ]
35 p | -
UHORE -S5O
It is easily seen that the above expressions for. 34 involve summation over -
the dlfferent sets of matrix elements, the selection rules belng set by the.
6~] symbols of 5.10. The expectation values of Q and Q can be used to N
build the Q-variance: '5?
(D) = D-1e77 5.12 _
having the physical meaning of the square of the softness in {. K
The matrix element of the fifth-order product e
P2(J) = <s|{(E2 x E2)” x [(B2 x £2)? x E2]T}0|s> 5.13
defines Q5c0535. There are three independent sum rules for J=0,2,4 coupling.
Making an intermediate state expansion and reducing the resulting 6-j ;ﬁ
symbols with I =0 one obtains: -
"
Posas() =160 =i [ M. M ¥ K ls -
2Is+1 rtyy St O tT v vw -
5.14 =
I +I :
2217 227 222 o
Q(—I)WS{III}{III}{III} 1}
‘ s r't¢ grw WV .

Y35 G0y = a(a) = 38 ¥35

V2 V2

where C(0) = § 5 Va2

and a negative sign should be used for the integral-spin cases, while a
positive sign corresponds to the half-integral spin cases.

The sixth order products of E2 operators define both the
expectation value of Qa and the expectation value of Qecos35. The matrix

element:

PO (D) = <sl{([E2xE2)” x (B2xE2)710 x (B2x£2) %)) s 5.15

]
3

T AN

”r 3
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-

-

is related to Qs, while the matrix elements:

¢s|{[(E2xE2)? x E2)7 x [(E2xE2)? x E2]}0|s> 5.16

6
&

and

<s| ({[E2xE2)? x E2]” x [E2x(E2xB2)?710|s> 5 17

8
Po(9)

both define Q6c03235, Coupling scheme 5.15 yields for J=0,2,4:

B/ _ ar 1
@) =¢M) rtgwu 2Ir+1 Mst Mtw Mwu Mur Mrv Mvs

I=I
r W
I -I

22J 22J s u
{ }{ } (-1 5.18
IstIt IsIrIV

5 35

where C(0) = 5T +1 7 €(2) =C(4) = 2(21 _+1)
s ]

Knowing the expectation value of Qs one can construct the second statistical

moment, the skewness, of Qaz

@) =@ - W« 2@’ 5.19
The evaluation of P?(J) (5.16) and PZ(J) (6.17) may involve the J=0,2,3 and

4 coupling schemes. However, J=3 coupling is insignificant from the point of
view of Coulomb excitation since it favors strongly E2 matrix elements
coupling the states with AI=«1 spin difference. These matrix elements are
not well defined by the Coulomb excitation experiments. It is most clearly

seen in case of even-even nuclei where the ground state spin is O and the

- preferable path of excitation involve the m=0 magnetic substates for all

states. In this case, the 3-j symbol involved in the definition of the

coupling parameters $em (1.17¢) is:

I2I=ly _
(o 0) =0 | 5.20

since j1+jz+js'= (21+2)=1 is odd (see e.g.[ROTS9]). This means that the

lowest significant coupling is the Am==1 coupling being an order of
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magﬁitude weaker than the Am=0 coupling. Applying the first order
perturbation theory 1.24, 1.26 one also finds that due to the antisymmetry
of Q2/1(w) this mode of excitation is strongly inhibited. As a result, the
E2 matrix elements connecting the even and odd spin states are measured with
the large errors, unless some additional data, most important the branching
ratios, are available.

Restricting ourselves to J=0,2 and 4 couplings we have from 5.16
and 5.17:

8 2 35 .6 35 L8
Q@ cos“35(0) = 5 Pl(O) =5 P2(0) 5.21

and  Q8cos?35(J) = 35 @} ,(4) - ¥3 8 5 (2) 5.22
J=2,4

~ 1/2
with P?(J) _ 5(2J+1)

- 2IS+1 rutve  SU Mut Mtr Mrv Mvw Mws

2J. .222. 297
rr,t Ty

s r’t s7tTu s r'w

- R N
Wrv

1/2
and  Po(N) = 2D ry oy oy

213+1 rutry | SY ut “tr Trv rw ws

2J 222 22J T.
° {% 11t Grrr &l {§§%} 0Tt ey 504
3Tt s7tTu S s“v w

5.21 through 5.24 define three independent estimates of Q6c03235 - one
involving the J=0 coupling, identical for both P? and P: and two involving
the J=2 and J=4 couplings for P: and P:, respectively. Using the value of Q°
(5.18) the expectation from 5.22, which, combined with the expectation value

of c0s38 can be obtained which define the softness in § as the square root

of the co0s36 variance:

vz(c0535) = <c05236>~<00336>3 5.25

The expectation value of cos3§ can be extracted either from the

T AR

g



Q3c0335 invariant or three possible values of Q5C0835 provided that the
expectation values of Qs and Qs are known. These values can be estimated

using an interpolation between Qz, Q4 and QC. Ve use:

@b = G @Y. @ont)? 5.26

g%

(@hH* . @%0))1/%))5 5.7

B s

(

where the J=0 coupling for §* and Qe is used because of the minimum number
of the matrix elements involved, thus being preferable from a point of view
of the completeness of the summation and the error propagation. For the same
reason only the expectation value of cos3§ extracted from Qscos35 is used
for the softness in §.

To summarize, the sum rules allow to find the expectation values
of rotational invariants built of § and 6. It is then possible to find the
statistical distribution of QB and cos3§ i.e. the first statistical moments
related to the softness in both parameters and the second statistical
moment, the skewness ( in our case calculated for Qz only). With various J-
couplings which can be used to evaluate the higher-order imvariants, the sum
rules provide the test of the completeness of the data as well as of the

self-consistency of the fitted E2 matrix elements.

- 183 -



V.2.  PLOGRAM SIGMA

A separate code, SIGMA, has been written to evaluate the sum rules. This
program has been designed to use the information created by GOSIA (see V.3),
although it can be used separately to calculate the centroids (i.e., the

expectation values) of the rotational invariants only,. with no error

estimation. The following subsection cuclines the algorithms used for the”

computation of the rotational invariants and resulting statistical

distribution of § and cos36 and the method employed to estimate the errors
of computed values.

V.2.1. COMPUTATION OF THE INVARTIANTS

The most efficient way to evaluate the rotational invariants is to use the
matrix multiplication formalism having the selection rules for different sum
of products superimposed by masking the array of the E2 matrix elements with

the appropriate 6-j matrices. Let us define (with s being a fixed target
state index):

VL = {Msr} "left-hand vector® 5.28a
VR = {¥_} "right-hand vector® ' 5.28b
_ 227
S, () = 220, 5.28¢
sTrv
T, e _ 22J ‘
S =u 227, 5.28d
. sy
_ 222 227
Trv(J) (Z W va {I ITX H {I IT } 5.28e
rvw sy
=T M (a1 Wls 1 5 5.28¢
rv rw Ly (°1) 2I_ +1 "I T o
W r rv

s

oy



ey

s . 237 : 3 :
.- /:§ RN T 2 -

The rotational invariants can be expressed in terms of the operators 5.28 as
(if the phase needs to be appended, r stands for the row index and v stands

for the column index):

02 1 - =

o -__—-_ZI 1 vLo VL : 5.29a
3
QPcos3s = 7 38 5’I’§1’f 70 8(2) ¢ Ty 5.20b
4 ' - T Is+3Ir -
(D =) v, e 87 (N[8(D) (-1) ] e % 5.29¢
QPeos3s() = 7 C(I) T, ¢ ST(I) ¢ T 0 T | 5.29d
6 - T ’ -
@) =00 7o W =T 250 7 5.29
8 2 - Is+Iw T
Poos®36(2) = e 7o 5@ (0 ° " 5T -
5.29f
IS+Iﬁ _
o [T(D) (-1) ° YR
8 2 - Is+Ir T | :
Peos®35(2) = 0 7o [8) (DT ]+ ST@ 3@
5.29¢

Is»e»IW _
HONS I

®

where C(J) are the appropriate constants as defined in the previous
subsection and two formulas for QGCOSSG(J) correspond to the coupling
schemes 5.18 and 5.17. The invariants are evaluated according to 5.29 from
the right side, so that only the matrix-vector multiplications are
performed, without any matrix-matrix multiplications.

.
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V.2.2 ESTIMATION OF ERRORS IN SIGMA

The rigorous estimation of the errors of the function of the E2 matrix
elements would require the knowledge of all sets of these matrix elements
yielding a given value of this. functions together with the probability of
each such set. Technically it is of course out of question to apply this
method to evaluate the errors of the rotationa] invariants. We are therefore
forced to use a crude approximation, which is to assume that the set of the
measured matrix elements is contained within ag ellipsoidal contour (mote
that because of the correlation all matrix elements, not only E2, have to be
taken into account). This contour is defined by a requested increase of the
S statistic (3.24) and its orientation in the space of the matrix elements
results from the correlations introduced by a method of measurement. 0ne
should be aware that the correlation of the matrix elements introduced by a
functional form may be completely different from that resulting from the
measurement. As an extreme example it is easily checked that the variance of
Q° vanishes if there is only one state of a given spin, whatever values of
the matrix elements are used. In this case, the error of the variance is
zero, no matter what errors are assigned to the matrix elements.

The error contour, defined by the increase of the § statistic

(3.24), is approximated by the quadratic formula:

35 =6 =9_ o AR + % AL o T o AR 5.30

where Vo is the gradient taken at the origin, Ho’ while J is the second

derivatives matrix:

P
ik = OM. oM
i k
and ' 5.31
AR =0 - H
o

It is easily checked that all points on the contour 5.30 can b

parameterized by:
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ME =0 -0 = 20e 5.32

° 9 a7 8% + 265 7512

where e is an arbitratry vector. Denoting a given function of matrix
elements by S(H) we have to locate the points ¥ on the contour yielding the
extremal values of S(H). Let us consider the function S(H) which can

locally be appoximated by the linear expansion in H:

A =9 « ®-1) 5.33

where we expand S(H) in a vicinity of Hs. To find the extrema of 5.33 on the

coutour 5.30 we have to find the vectors e satisfying:

g 20° (@ -2
— ( Yy =0 5.34
ds 93 +[(7-5)2 + 25a15]1/2
Q o]
which yields: v
Vs(za-voé) - VO(VSE) - (VSE) e Je =0 5.35

From 5.35 it is clear that the vector e must be a linear combination of
J“lv@ and J"’J‘VO° Inserting
s=alt9 +puly 5.36
s o ‘
to 5.35 we get, using the identity
7 5t =9 sty 5.37
s ) o g ,
resulting from the symmetry of J:

2649 17y 1/2
2y f=-1 5.38

cz::t(
7 1y
s s

which is valid for -any arbitratily chosen origin ﬁo‘ However, in our case we

can assume that Eo, the vector of fitted matrix elements, is a close
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ap@roximation of the minimum, thus Vozo‘ Neglecting the terms containing Vo b
we finally get: ?
1/2 ' "

B=0 « —2Z 7y 5.39
° VSJ Vs s e

where a positive sign corresponds to the maximum of 5.33 on the contour 5.30

. o
and a negative sign corresponds to its minimum. This formula gives an exacst
solution for any linear function of M. For non-linear functions 5.39 can be

used iteratively following the scheme:

5

@ -9 @y = g G
Vs = VS(MO) = M B
5.40
(1) _ g(1)y -y 5(2) "
VS = VS M) = M
until the convergence is achieved. This procedure is used in SIGMA to
estimate the errors of Qz, cos36 and their statistical moments. Because of
the fact that the implementation of the sum rules is only possible for the
cases in which virtually all the E2 matrix elements for low lying states are

known, implying that the underlying Coulomb excitation problem is well

. '@

overdetermined, it is reasonable to assume least-squares statistic increase

6=1.The J matrix is estimated using the gradients computed by GOSIA during
the calculation of correlated errors (see III.6) and stored on a permanent
file. Applying the quadratic approximation 5.1 and assuming Qo = minimum

(i.e. V°=O) one can write:

@2 o

V(@) =7 ¥ - ) 5.41

During the correlated errors calculation GOSTA evaluates the gradients in
points B for which only one matrix element at the time is perturbed from its
central value. This means that H- ﬁo has only one non-zero componment, thus
5.41 defines k-th column of J if Mk has been perturbed. Two estimates of Jki
are available using positive and negative values of AMk. In addition, Jki "
can be evaluated using the i-th component of the gradient at perturbed Mk or

using the k-th component of the gradient with perturbed Mi' Since the Fg

L a¥sY . ¥
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qu#dratic approximation 5.1 is not fully adequate, the averaging procedure
must be used to cancel the difference between various estimates and to
preserve the symmetry of J. Furthermore, for the matrix elements Mk for
which the full error calculation was not performed only the diagonal element
J ~ is assumed to be non-zero, i.e., the correlation is neglected. The

kk
estimate of Jkk is this case results from:

AS = 1=% I, M | 5.42
where AMk is the average diagonal error of Mk’ i.e., the mean value of the
negative and positive deviations.

The method presented above allows to estimate the errors of the
collective parameters and their distributions with the reasonable
efficiency. One must be, however, aware of the scope of the approximations
used, which do not allow to treat the estimated errors very rigorously,

providing only a crude estimate of the accuracy the sum rules are determined

with.
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V.2.3. INPUT INSTRUCTIONS

SIGMA reads in the input file and in addition three permanent files created
by GOSIA, referred to as TAPE1l, TAPE2 and TAPE3. The input file selects the
mode of calculation and should be given as:

I

R O e 4t 2 0 G e 7 i T3 D e e 2 e O >

I(1)
I(2)
only if O< NST ¢ 75

I(NST)

IL may be either 0 or 1. TL=1 will cause the printout of the
matrix elements (by their indices) involved in the evaluation of 14
invariants calculated for each state. The invariants are numbered from 1 to
14 according to the sequence they appear in first column of the oﬁtput table
(see the sample output at the end of this chapter). IL=0 will cause no
compilation of this list.

NST selects the mode of error calculation. Three special values of
NST - NST=-1, NST=0 or NST=09 require no further input. NST=-1 is used if
only the invariants and the resulting statisical moments (given in the
second column of the output table) are to be calculated and no error
estimation is réquested. In this mode SIGMA can be used independently of
GOSTA and the information concerning the level scheme and coupling schenme,
normally produced by GOSIA, must be provided by the user (see the
description of the TAPE files below). NST=0 implies that the error

calculation is to be performed only for QQ, three values of v(QB) and four
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values of cos38 for all states, while NST=09 specifies the errors to be
estimated for every statistical moment for all states. The reason for this
distinction is that the statistical moments based on the sixth-order
invariants are usually not meaningful due to the number of the matrix
elements involved and the resulting error propagation. Also, calculation of
these invariants is most time-consuming. Usually, it is practical to
: calculate all the errors only for few lowest-lying states. This can be
- achieved using "mixed® éalculation mode, speéified by OKNSTS75. In this

j case, NST has the meaning of a number of states for which the ®full®
"y | calculation is to be dome, while for the remaining states the "fast® mode,
.d corresponding to NST=0 will be used. In this mode the list of state indices

(NST records) must follow.
Note that the errors quoted are the errors of statistical moments

(column 2 of the output table), not of the invariants listed in the first

column.

Permanent Files:

TAPEL: This file contains the errors of the matrix elements and is written by

GOSIA as TAPE15. It is not required if NST=-1.

TAPE2: This file is written by GOSIA during full error calculation om TAPE3 if
the CONT switch SMR, is set. TAPE2 contains the level scheme, the
coupling scheme and the set of gradients used to evaluate the J matrix.

ke If SIGMA is to be used independently of GOSIA, (i.e., only if NST=-1) a
: part of this file must be prepared by the user. The format of this
portion of TAPE2 should be the following:

- NS, NME, NI, NF . number of states=N3
' number of matrix elements=NME
index of a first E2 matrix element=NI
index of a last E2 matrix element=NF
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"
INDEX(1), SPIN(1), ENERGY(1) -
Level schene o
NS records ;
INDEX (NS), SPIN(NS), ENERGY(NS) o
IME(1), INI(1), INF(1) Coupling scheme. IME is the index
of matrix element, INI is the index “pe
of an initial state, INF is the index
of a final state. GOSIA convention
. applies to the ordering of the
IME(NME) , INI(NME), INF(NME) matrix elements (see IV.15).
. #n
NME records. _
IME(1), MEQ1) Values of the matrix elements. -
NME records. ’

TME (NME) , ME (NME)

0,0 : Two zeros terminate inmput.

TAPE3: Contains the table of the 6~j symbols used for the caleculation of the o
invariants. This table can be created by GOSIA with OP,SIXJ (see
IV.25). GOSIA writes the table on TAPEl4.

Prop—
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VI. FILE ASSIGNMENTS

The following chapter provides an overview of the file 2ssignments in
GOSIA, SIGMA and SELECT. A permanent or temporary file is referred to as
TAPEn, where n designates the code-declared file number. An actual name for
such a file depends on the operating system of a given computer, for
example the CDC/NOS file TAPE1 will be named FOROOL under VAX/VMS. To allow
the possibility of examining the contents of the permanent files generated
by all three codes a free format FORTRAN write ( i.e. WRITE(n,*) ) is used.
The only exception is the internal correction factors file TAPEL ( see
Section III.5 ) which may be frequently updated during the least-squares
fiﬁ, therefore to speed up the input/oufput operations the binary format
( i.e. WRITE(1) ) has been chosen instead. '

The short description of the files being used by GOSIA, SIGMA and
SELECT is presented in sections VI.1, VI.2 and VI.3, respectively. The
files are classified as inpuf files, i.e. the ones which must be attached
to the current job, output files, i.e. the ones which are created by the
job and should be saved as permanent files for further use, and internal
files, used to transfer the data between some of the modules of GOSIA. The
internal files need not be attached to the job or saved after the
execution. Both GOSIA and SIGMA require an input file which should be
provided by the user in the READ% format, while no such 2 file is needed %o
run SELECT.

Section VI.4 provides a series of examples of the typical command
sequences together with the lists of the inmput, output and internal files

employed during the execution.
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VI.1 FILE ASSIGNMENTS IN GOSIA

TAPEL

TAPE2

TAPE3

Contains the internal correction factors ( see Section ITI.5 )
created and updated when OP,MINI is executed. TAPEl is required
as-an izput file if the CONT switch CRF, was selected. CRF,
causes GOSTA to read the internal correction factors from TAPEL
instead of calculating them when OP,MINT is encountered.
Obviously, TAPEl is to be saved after a previous rum to use the
time-saving CRF, switch when resuming the minimization. The
internal correction factors are updated ( and stored on TAPEl )
every time the TEST criterion of the OP,MINI imput ( IV.17 ) is
fulfilled, thus the internal correction coefficients stored on
TAPE1l will correspond to the last set of matrix elements for
which the update, defined by TEST, was dcne. In addition, the
internal correction coefficients can be calculated using the
CONT switch CCF, for a given set of matrix elements. In this
case TAPEl should be saved and defined as an input file for the
subsequent run using the CONT CRF, switch.

Contains the set of matrix elements resulting from the last
minimization run. TAPE2Z is overwritten after completion of each

OP,MINL command. The values of the matrix elements stored on

‘TAPE2 can be used instead of those specified in the ME imput
using the OP,REST command before the selected executable option.

An existing permanent file must be assigned to TAPE2 if OP,REST

is used.

The function of TAPE3 depends on the command being executed.
TAPE3 is the input file of the original, uncorrected
experimental 7 yields for OP,CORR ( the output file of the

ONA _

et



TAPE4

TAPE?

TAPE8

e

corrected yields will be written on TAPE4 ). Note that if
OP,CORR is to be executed the OP,YIEL input entry NTAP (see
Section IV.29 ) must equal 3. TAPE3 can also be assigned instezd
of TAPE4 as an input file of the corrected yields for 0P, MINT
and OP,ERRO, if the value of NTAP is 3. To avoid a possible
input/output assignment conflict it is, however, recommended to
use TAPE4 when executing OP,ERRO, since TAPEBKis reserved as an
output file for the code SIGMA if the CONT switch SMR, is set.
In this case TAPE3 is created during a first run of OP,ERRO with
IDF=1 and IREP=1 (see Section IV.8) and updated if IDF=1 and
IREP=2. '

Contains the corrected yields written when OP,CORR is executed.
TAPE4 should then be an input file of the experimental yields
for both OP,MINI and OP,ERRO with the OP,YIEL entry NTAP=4. As
discussed above, TAPE3 can also be assigned for this purpose.
TAPE4 is also written when OP,POIN is executed with IFL=1 ( see

Section IV.18 ) to create the simulated "experimental® yields

Contains the maps of the g-parameters to be used by the fast
Coulomb excitation calculation ( see Section III.2 ). TAPE? is
written by OP,MAP and read automatically when either OP,MINI or
0P,ERR0 command is encountered. This means that the existing
permanent file containing the g-parameter map should be
attached to the minimization or error calculation jobs as
TAPE7 unless OP,MAP has been executed before during the same

run.

Contains the absorption coefficients needed to reproduce 7
energy dependence of the detector efficiency. Created if NPD
in OP,GDET is negative, which is connected to the use of "raw®

spectra as defined by the input to OP,RAW.
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TAPEQ

TAPE14

TAPELS

TAPEL7

Contains the parameters needed to approximately reproduce the 7-
energy dependence of the Ge detector solid angle attenuation
coefficients Qk ( see Section ITI.3 ). TAPE9 is written when
OPF,GDET is executed and automatically read in when OP,YIEL is
encountered, which implies that TAPEQ should be attached to any

job involving the calculation of 7 yields.

An output file for OP,SIXJ. Contains the table of Wigner’s 6-j
symbols to be used by SIGMA. TAPE14 also serves as an internal
file when OP,INTG, OP,CORR, OP,TROU or OP,MINI with the
calculation of the sensitivity maps ( see Section ITI.5 ) are

executed.

Contains the current set of errors of the matrix elements
calculated by OP,ERRO. TAPE1S is written by OP,ERR0 if IREP=0
( see Section IV.6 ) and read, updated and overwritten if
TREP=1. Internal for OP,INTG, OP,CORR and OP,TROU. |

An output file for OP,ERRO, containing the best ( i.e. yielding
the lowest value of xg ) set of matrix elements found during

the scan of the xz hypersurface ( see Section III.8 ). Also
serves as the output file to write the statistical temsors after
Coulomb excitation using the CONT switch TEN, in conjunction
with either OP,STAR or OP,POIN ( see Section IV.3 ). The
structure of this file, which may be used by external

programs to examine the 7 decay following the Coulomb excitation

is as follows:

aNne




TAPE18

N

poo

pzo’pzl’pzz
Paoxﬂél,ﬂéz:P431P44
peo’p51’Paa’psa’ps4’pes’pee

where N is the level index as defined by the sequence of the
input to LEVE. The tensors for the ground state N=1 are not
stored, thus 2 ¢ N ¢ NMAX where NMAX is the number of levels
included. This sequence is repeated for each experiment
according to the sequence of the imput to EXPT. Note that
because of the symmetry g, = (-I)mpk_m only the components with

m > 0 are stored. '
TAPE17 is also used as an internal file by OP,TROU and OF,INTG.

An input file for the program SELECT and for OP,ERRO if the
correlation matrix is to be used to reduce the number of
correlated matrix elements during a full error calculation
(IDF=1 and IFC=0 in the OP,ERRO imput - see Section IV.B, see
also Section III.6). TAPE18 should be first created using the
CONT switch SEL, and the default setting of the print parameter
4 (i.e. -2) while executing OP,MINI. TAPEIS should then be
attached to the execution of SELECT, the result being written as
TAPE10. The latter file can then be attached to the OP,ERR0 job
as TAPE1S8.

Internal for OP,TROU.
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TAPE22

TAPE23

Output printer file. Unit 22 is used instead of default FORTRAN
unit 6 to avoid merging the output with system messages (e.g.
underflow warnings) on some systems. During minimization the
cﬁrrent value of CHISQ is also output on TAPES. Dependent on the
system and execution mode it will appear either on the screen

or in log file, which usually can be viewed during execution.
This helps to decide whether or not interrupt the job if no
progress is made.

Lists the Doppler-shifted T-ray energies and detector
efficiencies when OP,POIN is executed in conjunction with
0P ,RAVW.

VI.2 FILE ASSIGNMENTS IN SIGMA

SIGMA requires three input TAPE files - TAPE1l, TAPE2 and TAPE3. All three
files are written by GOSIA. However, if no error estimation of the
invariants is desired it is not necessary to attachATAPEl and only a part
of TAPE2 is needed - see Section V.2.2 for details. SIGHA produces no
output files other than the printer output. The input file assignments are
the following:

TAPE1

TAPE2

Contains the errors of the matrix elements, equivalent to the
GOSTA ocutput file TAPE1S.

Equivalent to the GOSIA output file TAPE3 written during the

calculation of the full errors ( OP,ERRO with IDF=1 and the CONT
switch SMR, ).

B

o g

ERRY



TAPE3 The table of the 6-j symbols created by GOSIA as TAPEl4 using
- 0P,SIXJ.
" TAPES The printer output file.

£ VI.3 FILE ASSIGNMENTS IN SELECT

SELECT requires one input TAPE file, TAPE18, written by GOSIA and no user-

given input. The file assignments are as follows:
TAPES The printer output file.

TAPE10 Output file, containing the "correlation matrix?, i.e. the
1 square matrix, indexed by the indices of the matrix elements and
having the elements either equal to O ( mo correlation
----- » detected ) or to 1 ( correlation detected ). This matrix should
: ; be attached to the OP,ERR0 job when calculating the correlated
.ﬁl ' errors as TAPE1S.

TAPE1LS Inpﬁt file, containing the information writtenm by GOSIA also on
TAPE18 during the execution of OP,MINI with the CONT switch SEL,

set and the print parameter 4 equal to -2.
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VI.4 EXAMPLES OF THE FILE ASSIGNMENTS FOR TYPICAL JOBS

This section provides some examples of the file assignments necessary to run
the typical jobs. The schematic examples of the input streams, ordered

according tc the usual sequence of the jobs run to analyze a given case, are

followed by the list of the input and output files. The dots designate the”

irrelevant portions of the input. The user-given input file and the printer
output file (TAPE22 in GOSIA, TAPE6 in SIGMA and SELECT) are not listed.

0P,TITL is always optional and can be skipped. It is also assumed that for
all the jobs involving

minimization or error calculation ( i.e. starting from VI.4.5. ) the

corrected experimental yields reside on file TAPE4.

VI.4.1. COULOMB EXCITATION AMPLITUDES
0P, TITL

0P,GOSI
LEVE

CONT
END,

0P,STAR
0P, EXIT

i



%5

pA

Input: None

Qutput: None

Comments: This job can be runm with both OP,GOSI and OP,COUL. Adding the
CONT switch TEN, will cause creation of the output file TAPE17

(. the statistical tensor file ).
VI.4.2. CREATION OF TEE GE DETECTORS FILE

oP,TITL

0P,GDET

0P,EXIT

Input: None

Qutput: TAPEQ (TAPES)

Comments: The file TAPEQ is needed as input for all jobs imvolving the
calculation of the 7 yields. It is not necessary to select
0P,COUL or OP,GO0SI to run OP,GDET. TAPE8 is necessary only if
0P,RAW is to be used.

VI.4.3 CALCULATION OF THE ¢ YIELDS
0P, TITL

0P, GOSI
LEVE
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CONT
(TEN,)
END,

0P, YIEL

0P, POIN
IFL, YLTM
0P, EXIT

Input: TAPES

Output: TAPE4 if IFL=1, TAPE17 if the CONT switch TEN, is selected.

Comments: This job can be rum with either OP,COUL or OP,GOSI. The OP,YIEL
entry NTAP must equal O.

VI.4.4 CALCULATION OF THE INTEGRATED 7 YIELDS AND GENERATION OF A
®CORRECTED" EXPERIMENTAL YIELDS FILE

0P, TITL

0P, GOSI
LEVE

oy

i
::S_qu
e

RM’_‘??%
i

P
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EXPT

CONT

0P, YIEL
0P, INTG

0P, CORR
0P, EXTIT

Input:  TAPE3,TAPES
Output: TAPE4
Comments: The OP,YIEL entry NTAP must equal 3 ( i.e. the original
' experimental yields must reside on TAPE3 ). OP,INTG can be
executed wifhcut a subsequent OP,CORR, in this case NTAP must
equal O, TAPE3 need not be attached and no output file is

written.

VI.4.5 CALCULATION OF THE q PARAMETER MAP

0P, TITL

0P,GOST
LEVE
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EXPT
CONT

END,
0P, YIEL

OP, MAP
0P, EXIT

Input:
Output:

Comments:

o,

o

TAPE4,TAPEQ . -jﬁ
TAPE7 m;

The maps of the q—paraﬁeters can be calculated without entering -
the decay-related information contained in the input to OP,YIEL. -

However, these maps are only needed for the fitting of the matrix ~$%

elements, so the deexcitation data are usually already included

in the input.




i

VI.4.6. MINIMIZATION RUN - INITIAL STAGE

0P, TITL

0P, GOST
LEVE

EXPT
CONT
PRT,

4,0

0,0

0P, YIEL
0P, MINT

0P, EXIT

- 215 -



ey

@

=
o
g
Input: TAPE4 , TAPE7 , TAPEQ 5
Output:  TAPEL,TAPE2 ‘ "
Comments: In this example it is assumed that the g-parameter map (TAPE7) o
has been generated during a previous run. OP,MAP can be executed “m
before OP,MINI in the same runm in which case TAPE7 should not be
attached as an input file, but will appear as an output file g
instead. The PRT, entry 4,0 switches off the time-consuming E
calculation of the sensitivity map and is recommended during e
the initial stage of the minimization. To further speed up the —Jﬁ
fitting procedure one can also use the CONT switch FMI, if the
printout of the comparison of the fitted and experimental data is ;
not crucial. Usually one needs this table only periodically, so
it is recommended to generate it separately when needed, by -
setting a high value of CHILIM in MINI command to inhibit actual
minimization. This procedure is also more reliable, since it o
refreshes the normalization constants.
| i
VI.4.7. MINIMIZATION - FINAL STAGE "
0P, TITL
0P, GOST b
LEVE
ME -
EXPT
CONT ‘
SEL, !



.....

20,

0P, YIEL
UI;,REST
oé,m
0P, BTT

Input: TAPE1, TAPE2,TAPE4, TAPE7, TAPEQ

Output: TAPE1,TAPEZ,TAPE1S8

Comments: The CONT switch SEL, in conjunction with the default setting of
the print parameter 4 ( i.e. -2 ) causes the generation of an
output file TAPE18, containing the information used by the code
SELECT to create the correlation matrix, subsequently used during
the error calculation. OP,REST causes GOSIA to use the values of
the matrix elements stored on TAPE2 instead of those given in the
ME input. The internmal correction factors file TAPEl may be
updated if the TEST criterion is fulfilled.

VI.4.8 SELECT - CORRELATION MATRIX GENERATION
No user-given input is required to run SELECT. The only files needed are:

Input: TAPE18, created by GOSIA as TAPE18, as described above.
Output: TAPE10, containing the correlation matrix.
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VI.4.9. DIAGONAL ERROR CALCULATION ' s

0P, TITL

0P, GOST
LEVE

EXPT

CONT
CRF,

0P, YIEL

-

0P,REST

i

ey

OP,ERR0
0,MS,MEND,0,0,RMAX
OP,EXIT

Py
S
3
©orER
Py

e
e



ey

Wt

Input: TAPE1,TAPE2,TAPE4,TAPE7 , TAPES

Cutput: TAPE1S

Comments: This example assumes the first diagonal error calculation, so
TREP=0 and TAPE15 is not attached as an input file. To resume the
diagonal error calculation the input to OP,ERRO should be

modified as follows:

0P, ERRO |
0,MS,MEND,1,0,RMAX

and the file TAPE1S should be attached as an input file. TAPE1S
%ill be updated and overwritten. '
Tt is also assumed that the internmal correction factors ( TAPEL )

and the current set of matrix elements ( TAPE2 ) are those
generated by the last OP,MINI rua.

VI.4.10. CALCULATION OF THE CORRELATED ERRORS

0P, TITL

gP,GOSI
LEVE

EXPT
CONT
CRF,

SMR,

- 219 -



END,
0P, YIEL

0P ,REST

0P,ERRO

1,MS,MEND,1,0,RMAX

OP,EXIT

Input:
Qutput:

Comments:

TAPE1,TAPE2, TAPE4, TAPE7 , TAPEQ, TAPE15, TAPE18

TAPE3,TAPE15,TAPEL7 if sets of matrix elements yielding better
values of xz were found during the run.

The above example assumes that the file for the sum-rules code
SIGMA ( TAPE3 ) is to be created and that the correlation matrix
( TAPE18 ) is to be used during the error calculation. If more
than one run is necessary to perform the full error calculation

one should modify the input to 0P,ERRO as follows to resume the
job:

0P, ERRO
1,M4S,MEND, 2,0, RMAX

and attach TAPE3 as an input file. TAPE3 will be updated and
overwritten by the current job,
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VI.4.11. 6-~j SYMBOLS TABLE

0P, TITL
0P, SIXJ

0P,EXIT

Input: None
OQutput: TAPEl4

Comments: OP,SIXJ can be inserted anywhere in the command sequence, in

which case the input files required by the preceding optioms

must be attached.
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Date: September 2, 1987 | APPENDIX T
From: Alezander Kavka | o

To: Coulez group members o
: ®
| -
. EFFICIENCY CALIBRATION CODE |

| i
inew program is available to simplify the zoutine procedure of gamma-detector efﬁciéhcir - |
calibration. It is called GREMLIN ("Gamma-Ray Efficiency Measurement and Line [Nten- 7
sity calculation™) and resides on the NSRL VAX in the directory 'KAVKA|. If any changes ~
are made in this code, the linking command is =
SLINK GREMLIN, KAVKASILVIA{POLFIT -
GREMLIN performs two separate tasks: _

1) Least-squares fit of an efﬁ’czencv calibration function to a set of peak areas from
calibration spectra.
2) Calculation of ~-ray intensities from peak areas, using such a ftted function.

The code is interactive, and its prompts and questions are hopefully sufficient to guide
the user. Therefore, this memo provides no real input instructions, with one exception: it .
describes the structure of the input files containing the calibration points. o

Option 1: EFFICIENCY CALIBRATION e
1.1 Input of calibration points

A maximum of 500 calibration points can be entered. grouped in up to 9 independently
normalized data sets. Typically, these will originate from runs with different calibration
sources, but there can just as well be several sets from the same source. If there is more
than one data set, the code will automatically fit normalization parameters.

GREMLIN will ask for calibration points for each data set separately. For each set the
input can be from a disk file or from the keyboard, and consists of one record for each
calibration line. A record looks as follows: -

E, I, Al 4, AAd L
where £ is the v-ray energy, [ = AT the relative intensity, and A = AA the measured peak  rx
\d . . S48

area. Note that two data sets cannot be in one file. .

However, the input is simplified in the case of '>?Eu or 82 Ta sources, because the energies
and intensities of major '>2Eu and '82Ta transitions are stored in DATA statements in the

N oo 4



,ogram. These values were taken from R.A. Meyer: Multigamma- Ray Calibration Sources
ﬁawrence Livermore Laboratory 1978). The record format is then

A, A4

If keyboard input was chosen, the code will display each tabulated energy and intensity
and ask for the area and error. In an input file, the '52Eu or '#2Ta lines must be given
according to the following table: )

{
line 152y 182Ta |
number (keV) (keV) |
. 1 121.783 31.737
2 244.692 | 65.722
3 295.939 67.750
4 344.276 |  84.680 |
5 367.789 |  100.106 l
6 411.115 | 113.673
7| 443967 116.421 |
8 | -488.661 . 152.430 |
; 9 564.021 | 156.390 ,’
! 10 586.294 = 179.397 |
} 11 688.678  198.350 l
; 12 778.903 : 222.108 |
' 13 867.388 | 229.322 |
f 14 | 964131 ' 264078 |
15 ! 1005.279 °  927.983 !
16 '/ 1085.914  1001.696
17 1112.116  1113.414
18 1212.950  1121.299
19  1299.124  1157.505
20 1408.011  1189.051
21 ! 1528.115 | 1221.406 |
22 ! . 1231019
23 o 1257.421
: 24 | ; 1273.735 i
g 25 | 1289.158 |

pE

Any unobserved line that is to be excluded from the fit must be entered as 4 = A4 =0,
at the keyboard as well as in a file.

Data for other sources than '*?Eu and !¥2Ta can easily be added to the code in the future,
- should the need arise. Similarly it is trivial to include additional '5?Eu and '82Ta lines in

" the lists.
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1.2 Experimental and theoretical efficiency

For each calibration line GREMLIN calcu]
error: '

. s

A a4\l (M)’
£ = = SAE = ¢ — - —

I A !

and makes a transformation to the variables which are then internally used for the fit, i.e.

z = log — y

_ A
Ey

oo

= logs A

=

The logarithms are of base ¢ and £, = 50 keV.
The function that GREMLIN fts is

£(E) = A(E) P(E:q, .. an) F(E; f) WI(E;b,¢)

with the parameters a; ...

2n. f, b, and ¢ to be determined. The different factors are
discussed below.

1.3 Attenuation factor

A(E) = exp [* Z#i(E)dx]

A(E) stands for the absorption in layers of m differe

detector, u, and d, being the linear attenuation coe
material, respectively.

nt materials placed in front of the
ficient and the thickness of the ith

The absorber materials that GREMLIN takes into account are C, Al Si, Fe, Cu, Cd, Sn,

Ta. and Pb. The thicknesses (in cm) are given by the user from the keyboard. DATA
statements in the code contain the attenuation coefficient of each materia] fo

r 20 gamma
energles ranging from 30 to 4000 keV, Inte

rpolation is done by means of cubic spline curves.
Two of the energy meshpoints were chosen to be 67.416 and 38.004 keV, which are the
R-edges of Ta and Pb, respectively, and for each of those elements GREM
iwo spiine curves, below and above the edge.

elements lie below 30 keV.

LIN maintains
All other absorption edges for these nine

The variables actually used for the spline curves

are Iog-éz;— and log = (po =1 em=1),
since the points are more evenly spaced in the log-

log plane.

The attenuation coefficients were calculated from total cross-sections o given in E. Storm,
H.I Israel, Nuclear Data Tables AT (1970) 3565, according to

4 em-! = pN 0 — 0.602205 ° fg/'cm"z} o [barn]
l P . bt

M . M {g/mol

~224~-
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where p is the density, V4 Avogadro's number, and M the atomic weight.

1.4 Polynomial factor

The polynomial factor, degree n < 3,

k
~ - , - E &
P(Eiay...a,) = exp {Z ax (xog E;) J = é__
CLk=0 <

is a simple representation of the basic decrease of the efficiency with increasing 7 energy.
The word "polynomial”™ refers, of course, to log ¢ as function of log E.

The degree n is chosen by the user. GREMLIN finds good initial values for the parameters
ax by fitting a pure nth-degree polynomial in the region above 250 keV, where P(E) can
be expected to dominate.

1.5 Functions describing low-energy slope

An inverse-power factor, with arbitrary .V >0, and f <0,

e =ualt ()

and a " Woods-Saxon"-type factor, with b and ¢ > 0.

1
WI(E:b.¢c) = ———mmm—o
( ) 1- exp b—:—E-
are optional. and are unlikely to be used simultaneously, although the code allows that.
Each represents the low-energy slope of the efficiency curve. Whereas F' is just an ad hoe
mathematical function, W attempts to model the effect of a discriminator threshold in the

pulse-handling electronics.

When F was used, good results were obtained with e.g. ¥ = 5, but the value of .V does not
seem to be very crucial. An initial value for the parameter f is found by simply sampling
the value of x2 throughout a range of f. The range and stepsize are given by the user, but
if the code finds the optimum value at an endpoint of the range, it requests a new range
and tries again.

Initial values (in keV) for the parameters b and ¢, in the " Woods-Saxon” case, are given

* by the user. They are easy to estimate, b being the threshold and ¢ a rmeasure of the "rise

time” of this step function.
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1.8 Normalization between data sets -
In case of more than one data set, initial normalization factors are cho en in the following
way: A linear function B

y) = aéj)‘ _;agJ}:

is fitted to every data set in the region £ > 250 keV (7 labels the data sets). The efficiency ®

values in data set #; are then rescaled by replacing y with Yy - aé” - ac(,j). This is done
before determining initial values for the other parameters.

"
During the main ft, each normalization parameter ig corrected after every iteration bya-

simple x? scan throughout a range of its value. The scan does not have to bhe iteréted,
since there is no correlatjon between the normalization factors. s

1.7 The main ft , :

When all parameters have been given starting values, the full function is fitted to the
calibration points by an iterative matrix inversion method (the same that is used for peak-
shape fitting in SILVIA). After every iteration /and renormalization, in case of more than

one data set) the program displays the x? and the new parameter values and the user

decides whether to continue or stop. Convergence is usually rapid thanks to good initial

values — often only 2 or 3 iterations of the main fit are necessary.

When the fit is stopped, GREMLIN reports the best (noc necessarily the !ate_st) er the
corresponding fitted parameters with errors and correlation matrix, and a table showing

values of the ftted function in comparison with the measured efficiencies. Three optiona
output files can be written on disk at this moment:

1) A text file showing the results of the it in the same way as on the screen. .

2} Aninput file for TOPDRAWER that can generate a iog-log plot of the calibration
points and the fitted curve on the laser printer. The user can specify a header text and a
different point plot symbois for each data ser. -

3) A storage file containing the fitted parameter values, information about the J
functional form used. and absorber thicknesses. This file is read bv GREMLIN's Option 2
to calculate y-ray intensities. . :

. ey
i

£33
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Option 2:  INTENSITY CALCULATION

In this option, the program reads a storage file written by Option 1, and can then re-crea
the fitted function ¢(E). It also asks the user to specify the kinematics of the experime
(masses of projectile and target; bombarding energy; mass and direction 8, ¢ of radiati

~ ejectile) as well as the angular position 05, ¢ of the v detector, so that efficiencies can }

calculated for the actually detected (Doppler-shifted) v energies.

The shifted energy is
) E

,—
E =13
"‘-C-COSCX

w.ere the velocity v is calculated from the kinematics and o is the angle between the v-ra:
and the radiating nucleus.

cos a = sinfsin d, cos(d — @) + cos 8 cos 8,

The user now types a series of transition en.efgies E and peak areas 4= A4, and GREMLIN
returns the corresponding relative intensities '

I=——_

e(EY)
and errors AJ. The errors are calculated from
AIN' /A4 2+ %
I T\ A €

where the efficiency error is estimated using the correlation matrix C that results from the
fie:

@;j(j =1...p) represents all the parameters of the fit.

The derivatives with respect to the parameters have simple analytical expressions:

de E"\? de EN\"Y
e O log — — =e(E") | log =
say =150 (1 ) 57 =) ()
de s(E) e E'-b 3¢
9b  c(l+exp ) d¢ ~ ¢ 3b
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ABRS3

ABR72

ALDS6

ALD66

ALD75

BOH69

BOS77

BRE77

CLI6®

CLI72

CLI8s

REFERENCES
A. Abragam, R.V. Pound - Phys. Rev. 92:943 (1853)

M. Abramowitz, I. Stegun (eds.) - Handbook of Mathematical
Functions, National Bureau of Standards, Washington (1972)

K. Alder, A. Bohr, T. Huus, B. Mottelson, A. Winther -
Rev. Mod. Phys. 28:432 (1956)

K. Alder, A. VWinther - Coulomb Excitation, Academic, New York,
(1966)

K. Alder, A. Winther - Electromagnetic Excitation, Theory of
Coulomb Excitation with Heavy Ions, North Holland, Amsterdam,

(1975)

A. Bohr, B. Mottelson - Nuclear Structure, Benjamin, New York,
(1969)

F. Bosch, H. Spehl - Z. Phys. A280:329 (1977)

R. Brenn, H. Spehl, A. Weckherlin, H. Doubt, G. Van Middelkoop
- Z. Phys. A281:219 (1977)

D. Cline - Bull. Am. Phys. Soc. 14:748 (1969)
D. Cline, C. Flaum - Proc. Int. Conf. on Nucl. Struct. Studies
using Electron Scatt. and Photoreaction, Sendai 1972, K. Shoda

and H. Ui (eds.), Tohoku Univ. (1872)

D. Cline - Ann. Rev. Nucl. Part. Sci. 36:683 (1986)

~228~

s

-

g
T B



i

Cz083

FRAB5

GRE84

KRA70

KRA72

LES71

NIK68

ROTS9

VAR86

T. Czosnyka, D. Cline, C.Y. Wu - Bull. Am. Phys. Soc. 28:745
(1983)

H. Frauenfelder, R. Steffen - in Alpha-, Beta and Gamma
Spectroscopy, K. Siegbahn (ed), North Holland, Amsterdam,

(1965)

H. Grein, H. Bmling, J. Stachel - GSI Rep. GSI-84-1 (1984)

K. Krane, RB. Steffen - Phys. Rev. C2:724 (1870)

K. Krane - Nucl. Instr. Meth. 98:205 (19872)

P.M.S. Lesser - PhD Thesis, Univ. of Rochester (19871)
V.3. Nikolayev, I.S. Dmitriev - Phys. Lett. 28A:277 (1968)

¥. Rotenberg, R. Bivins, N. Metropolis, J. Wooten - The 3j and
8j Symbols, The Technology Press, Cambridge, Mass. (1959)

B. Varnestig, A. Backlin, C. Fahlander, A. Kavka, T. Lenke,
L.E. Svensson ~ Nucl. Instr. Meth. A248:419 (1986)

-229-



wa-a

i

7




oy,
A

-

L E




g,

# fitem

L



GOSIA UPDATE - MAY 1996
OP, THEO

Generates matrix elements according to the geometrical model following Bohr-Mottelson
prescription ( General Structure of Matrix Elements, paragraph 4-3d in Nuclear Structure).
OP, THEO generates only the matrix specified in ME input and writes them on the REST file.
It should therefore be used after OP, COUL or OP, GOSI, but before OP, REST command is
executed. Fixing, coupling and releasing of the matrix elements is controlled by ME and
CONT commands, the only function of OP,THEO being to create numerical values and write
them to the restart file. This allows to make model-dependent analyses by specifying the
coupling scheme, generating a set of matrix elements and, keeping the values coupled,
performing the minimization, thus effectively fitting only geometrical intrinsic moments. To
define OP,THEQO input the user must divide the levels specified in LEVE input into bands of
definite values of K quantum number. First entry under OP, THEO is a number of bands,
which, as an input-saver feature, can be given as a negative integer, in which case the
remainder of the input to OP, THEO will be ignored and the contents of the restart file not
affected. This is helpful if some matrix elements are added or removed using ME option - OP,
THEO can then easily be reactivated.

OP,THEO input 1s divided into two loops. First one is the definition of bands and the levels
ascribed to be their members. As usual, LEVE-defined state indices are used to identify the
levels. The second loop is the multipolarity loop, which should exhaust all couplings defined in
the ME input. Here for each band-to-band coupling ( band indices being either identical for
inband matrix elements or different for interband matrix elements ) one should specify relevant
intrinsic moments for a given multipolarity. In general there are three intrisic moments which
could be involved. For in-band or equal-K interband transitions only one of them, marked Q1
is relevant. For non-equal K’s generally two moments with the pr0jeCt10nS equal to the sum
and difference of K’s are required (Q1 and Q2), unless one of the K’s is zero, when agam only
Q1 is needed. For the K-forbidden transitions three parameter Mikhailov formula is used.
Thus, in general, three Q-values are to be input for each band-to-band coupling. Note that Q3 -
a decouplmg parameter - is irrelevant always if none of the K-values assumes the value of 1/2
and-Q2 is irrelevant for in-band transitions and for K-allowed, one K=0 interband' couplings.
Nevertheless, three numbers are required for each band-to-band coupling.

The specification of multipolarities follows the general convention of GOSIA - E1 through E6
are labeled just by 1 through 6, while M1 is labeled as 7 and M2 as 8. Definition of bands and
multipolarities should exhaust all couplings included in ME scheme. It is important that
calculated matrix elements fit within the user-specified limits.

The structure of the input to OP, THEO is:

NBANDS Number of user-defined bands. If negative OP, THEQO is ignored

K, NLEV Band definition - K of a band, number of levels in band #1
NN, Nyiey Indices of levels forming band #1

The above two records should be repeated NBANDS times to
define all bands

A Start of multipolarity loop - first multipolarity
NB; NB; Band indices
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el

, Q1,Q2,Q3 Intrinsic moments
= NB;, NB; Band indices

Q1,Q2,Q3 Intrinsic moments

The above sequence should be repeated until all possible in-
and interband couplings for the first multipolarity are

exhausted
M 0,0 Ends first multipolarity definition
s A _ Second multipolarity
NB;, NB
- Q1,Q2,Q3
NEB, NB,
Q1,Q2,Q3
0,0 Ends second multipolarity definition
. 0 Ends multipolarity loop and the input to OP, THEQO
Example:

Assume an even-even nucleus X with two bands - a ground state band and a gamma-
vibrational band. LEVE and ME setup is as follows: '

LEVE
1,1,0,0

2,1,2,2 Levels 1,2,3 form the ground-state band, while 4,56 form the gamma band
3,1,4,.5 '
41.2.7

ERal el ]

51,3,1.1

k] b

6,1,4,1.5
0,0,0,0
ME
2,0,0,0,0

b T} 272

1,2,1,-2,2

3=

1,4,1,-2,2
221272

B et e et el

73122

o)y Ly Tl o

2,5,1,-2,2

e



ey




[l

5,6,1,-2,2
6,6,1,-2,2
7,0,0,0,0

2,4,1,-2,2
2,5,1,-2,2

3,5,1,-2,2

L B ]

3,6,1,-2,2

Matrix elements on the restart file can be generated by OP, THEO using the following

sequence:

OP, THEO

2

0,3
1,2,3
2.3
4,5,6
2

1,1
1,0,0
1,2
1,1,0
irrelevant
22
1,0,0
0,0

7

1,2
1,1,0
22
1,0,0
0,0

b

0

Two bands

K of the gsb, # of levels

Level list for the gsb .

K of the gamma band, # of levels
Level list for the gamma band
Multipolarity E2

In-band, gsb

Q1, two zeros irrelevant
Interband E2

Q1,Q2- Mikhailov formula, none of the K’s=1/2, so Q3

In-band, gamma band

In-band Q1, Q2 and Q3 irrelevant

Ends E2 loop

M1 loop

Interband M1

Q1 and Q2 for Mikhailov formula

In-band M1 _

Q1 for in-band transitions

Ends M1 loop

Ends multipolarity loop and OP, THEO input

As a result, the restart file will be created overriding the values of matrix elements as given in
ME input. If the first entry, NBANDS, is changed to -2 OP, THEQ will become inactive.
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