Model assumptions in Coulomb-excitation analysis and other GOSIA tricks

Magda Zielińska
IRFU/DPhN, CEA Saclay

- Model assumptions for a well-deformed odd-A case: ${ }^{97,99} \mathrm{Rb}$
- Efficiency of particle detectors
- Optimal subdivision of data
- Buffer states and sensitivity to unobserved transitions

Low-Energy Coulomb Excitation and Nuclear Deformation, chapter in: The Euroschool on Exotic Beams - Vol.6, Lecture Notes in Physics 1005, 43 (2022).

Coulomb excitation of ${ }^{97-99} \mathrm{Rb}$ at ISOLDE

- identification of rotational bands in ${ }^{97-99} \mathrm{Rb}$ (first observation of collective states in these nuclei!)
- statistics sufficient for gamma-gamma coincidences - level schemes established

Ch. Sotty, Phys. Rev. Lett. 115 (2015) 172501

- Second step: extraction of E2 and M1 matrix elements using GOSIA code

Problems in Coulomb excitation data analysis (${ }^{97} \mathrm{Rb}$)

- Cline's safe Coulomb excitation criterion not fulfilled for high CM angles
- efficiency for the 68 keV line uncertain
- 355 keV transition obscured by a line in ${ }^{97} \mathrm{Sr}$

- underdetermined problem: 20 gamma rays, 24 matrix elements (E2 and M1)
- very strong correlations between matrix elements

Problems in Coulomb excitation data analysis (${ }^{97} \mathrm{Rb}$) and solutions

- Cline's safe Coulomb excitation criterion not fulfilled for high CM angles
$\rightarrow 15 \%$ of statistics excluded from the analysis
- efficiency for the 68 keV line uncertain
\rightarrow would be a natural choice for normalisation but had to be excluded from the analysis
- 355 keV transition obscured by a line in ${ }^{97} \mathrm{Sr}$
\rightarrow intensity obtained from gamma-gamma coincidences

- underdetermined problem: 20 gamma rays, 24 matrix elements (E2 and M1)
\rightarrow model assumptions necessary: Alaga rules

$$
\left\langle\mathrm{KI}_{\mathrm{f}}\|\mathrm{E} 2\| \mathrm{K} \mathrm{I}_{\mathrm{i}}\right\rangle=\sqrt{\left(2 \mathrm{I}_{\mathrm{i}}+1\right)}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{~K}, 2,0 \mid \mathrm{I}_{\mathrm{f}}, \mathrm{~K}\right) \sqrt{\frac{5}{16 \pi}} \mathrm{e}_{0}
$$

\Rightarrow within rotational model E2 branching ratio depends on spins only (Qocancel out)

- very strong correlations between matrix elements
\rightarrow large uncertainties for low-lying transitions

Normalisation to target excitation

- for each value of $\left\langle 7 / 2^{+}\|\mathrm{E} 2\| 3 / 2^{+}\right\rangle$all remaining matrix elements in Rb and Ni are fitted to observed gamma-ray intensities and known spectroscopic data (GOSIA2)
- Alaga rules assumed for each pair of I $\rightarrow \mathrm{I}-1$ and I $\rightarrow \mathrm{I}-2$ E2 transitions

- for all other transitions a standard GOSIA1 analysis assuming this value of $\left\langle 7 / 2^{+}\right|\left|E 2 \| 3 / 2^{+}\right\rangle$

Ch. Sotty, Phys. Rev. Lett. 115 (2015) 172501

Normalisation to target excitation

Convergence problems
Total chi2, no constraints

- fluctuations due to a local χ^{2} minimum, more iterations give a more smooth dependence (and a new global minimum)
- smooth parts of the χ^{2} curve don't change much

Normalisation to target excitation

Different minimum if E2 branching ratios imposed

Results: deformation of ${ }^{97} \mathbf{R b}$

- two different assumptions give consistent results for 4 matrix elements
- these 4 transitions are populated in multi-step excitation \rightarrow matrix elements basically given by the observed intensity ratios in ${ }^{97} \mathrm{Rb}$ (weak dependence on adopted normalisation)
- results consistent with the ground-state quadrupole moment measured in laser spectroscopy (horizontal lines)

Next step: ${ }^{99} \mathbf{R b}$

Problems we know already from ${ }^{97} \mathrm{Rb}$:

- Cline's safe Coulomb excitation criterion not fulfilled for high CM angles
- efficiency for the 65 keV line uncertain
- very strong correlations between matrix elements

New problems:

- very low statistics (few hundred counts in the strongest line)

- target excitation not observed
- unresolved doublet at 222 keV
- extremely underdetermined problem: 6 gamma rays, 15 matrix elements)

${ }^{99} \mathrm{Rb}$: proposed solution and test on ${ }^{97} \mathrm{Rb}$ data

- matrix elements in the upper part of a strongly deformed rotational band related to observed intensity ratios in the nucleus under study (no external normalisation required)
- all E2 matrix elements (including Q_{s}) coupled using rotational model
- then we fit only M1 matrix elements and one Q_{0} to measured gamma-ray intensities
- tested on ${ }^{97} R b$ data, result consistent with weighted average of Q_{0} values obtained in standard analvsis

${ }^{99} \mathrm{Rb}$: results

- 4 M1 matrix elements and one Q_{0} fitted to measured gamma-ray intensities in ${ }^{99} \mathrm{Rb}$

- one clear χ^{2} minimum for all observed transitions
- precision rather low due to limited statistics

Deformation of ${ }^{99} \mathrm{Rb}$: comparison with ${ }^{97} \mathrm{Rb}$

Ch. Sotty, Phys. Rev. Lett. 115 (2015) 172501

Efficiency of particle detectors

two ways to account for it

Efficiency of a particle detector

- efficiency doesn't have to be uniform for all the detector's area
- some parts of the detectors can stop working at some point
- if the detector has a uniform efficiency lower than 100% no need to account for it in GOSIA (this effect will be naturally included in the normalisation constant of the experiment)

If the efficiency changes as a function of θ...

Solution 1:

- Coulomb-excitation cross section depends on θ scattering angle - one can modify detector shape in φ to take the efficiency into account
- applicable if we have a symmetric gamma detection set-up (gamma-particle correlations smoothed out)
- φ range covered by the detector scaled according to efficiency: true range (here: $\left(-7^{\circ}, 7^{\circ}\right)$) where efficiency is maximal, reduced to $\left(-3.5^{\circ}, 3.5^{\circ}\right)$ where it's only 50% of the maximum value, etc.

Efficiency of the particle detector: second solution

OP,INTG
3, 3, 683.2, 690.7, 28.38, -6.62, 0.223 683.2, 687, 690.7

3, 3, ...

- detector shape approximated by a large number (here: 729) of small circular detectors
- first step: comparison with a 100% efficiency detector, angular range covered by a single detector chosen to reproduce the Rutherford cross section

Efficiency of the particle detector: second solution

OP,INTG
3, 3, 683.2, 690.7, 28.38, -6.62, 0.119 683.2, 687, 690.7

3, 3, ...

- detector shape approximated by a large number (here: 729) of small circular detectors
- first step: comparison with a 100% efficiency detector, angular range covered by a single detector chosen to reproduce the Rutherford cross section
- second step: detector areas scaled according to efficiency ($\theta_{\text {half }}$ scaled as $\sqrt{\mathrm{A}}$)
- does not change the φ coverage of the detector - better if particle-gamma correlations important

Comparison of results

Integrated yields, normalised to $2_{1}^{+} \rightarrow 0_{1}^{+}$(YCOR)

transition	eff vs standard	PIN vs standard	PIN, eff vs PIN
$14_{1}^{+} \rightarrow 12_{1}^{+}$	18.5%	-2.8%	19.3%
$12_{1}^{+} \rightarrow 10_{1}^{+}$	13.6%	-2.0%	13.6%
$10_{1}^{+} \rightarrow 8_{1}^{+}$	8.2%	-1.0%	7.8%
$6_{2}^{+} \rightarrow 6_{1}^{+}$	4.3%	-0.4%	3.5%
$8_{1}^{+} \rightarrow 6_{1}^{+}$	0.7%	0.0%	0.0%
$4_{2}^{+} \rightarrow 4_{1}^{+}$	-3.4%	0.7%	-4.0%
$2_{2}^{+} \rightarrow 2_{1}^{+}$	-1.2%	0.0%	-1.2%
$6_{1}^{+} \rightarrow 4_{1}^{+}$	-1.7%	0.7%	-2.7%
$4_{1}^{+} \rightarrow 2_{1}^{+}$	-1.1%	0.5%	-1.6%
$2_{1}^{+} \rightarrow 0_{1}^{+}$	0.0%	0.0%	0.0%
Rutherford	-23.2%	0.5%	-25.7%

- both solutions work reasonably well
- corrections important for multi-step and non-yrast states

Complicated detector shapes: example of a ${ }^{44} \mathrm{Ar}$ study from GANIL

MZ et al, Phys. Rev. C 80, 014317 (2009)

- missing pixels and displacement of the detector with respect to the beam spot
- complicated shape succesfully approximated by >1400 circular detectors
- influence of the approximation on calculated gamma-ray yields estimated to be below 4\% (included in the uncertainties)
- compared to no corrections for detector shape, effect $\geq 15 \%$ for inner rings

Optimal subdivision of Coulomb-excitation data

Where is sensitivity to quadrupole moments coming from?

${ }^{76} \mathrm{Zn}, \mathrm{HIE-ISOLDE}$ data from: A. Illana, MZ et al., submitted to PRC

- compromise between number of subdivisions and statistics
- useful to have a range where the influence of $\left\langle 2^{+}\|\mathrm{E} 2\| 2^{+}\right\rangle$is negligible (horizontal cut), but not always possible
- for high CM angles influence of quadrupole moment should be higher than statistical error of the gamma yield
- if two cuts in $\left\langle 2^{+}\|E 2\| 2^{+}\right\rangle,\left\langle 2^{+}\|E 2\| 0^{+}\right\rangle$plane are really close, probably you will gain more by combining the statistics

Effect of unobserved transitions

Buffer states

- reorientation effect can be comparable with population of higher-lying states
- when analysing Coulomb-excitation data, we should include buffer states on top of bands to account for possible excitation of higher-lying states
- otherwise we get incorrect quadrupole moments, or, more rarely, even incorrect in-band $B(E 2)$ values between the higher-lying states
- rotational model can be used to estimate starting values of ME
- one buffer state on top of a band should be enough, as demonstrated by the next example

Buffer states

T. Czosnyka et al, Nucl. Phys. A458 (1986) 123

- ${ }^{248} \mathrm{Cm}$ Coulomb-excited with a ${ }^{136} \mathrm{Xe}$ beam, observation of states up to 22^{+}
- very collective ground-state band, no other states observed

transition	levels up to 30^{+}	levels up to 22^{+}	up to $22^{+}, \mathrm{no}_{\mathbf{s}}\left(22^{+}\right)$
$24^{+} \rightarrow 2^{+}$	2.4 mb	-	-
$22^{+} \rightarrow 20^{+}$	9.3 mb	$9.6 \mathrm{mb}(+3 \%)$	$11.1 \mathrm{mb}(+20 \%)$
$20^{+} \rightarrow 18^{+}$	29.0 mb	$28.8 \mathrm{mb}(-<1 \%)$	$28.0 \mathrm{mb}(-3.5 \%)$
$18^{+} \rightarrow 16^{+}$	73.0 mb	$73.0 \mathrm{mb}(0 \%)$	$73.3(+<1 \%)$

Coulomb excitation of ${ }^{42} \mathrm{Ca}$ at LNL

- Targets: ${ }^{208} \mathrm{~Pb},{ }^{197} \mathrm{Au}, 1 \mathrm{mg} / \mathrm{cm}^{2}$
- AGATA: 3 triple clusters
- DANTE: 3 MCP detectors, θ range: $100-144^{\circ}$

- first population of a superdeformed band in Coulomb excitation
- measured quadrupole moment of 2_{2}^{+}corresponds to $\beta=0.48$ (14)
K. Hadyńska-Klęk et al, PRL 117 (2016) 062501

Sensitivity to matrix elements corresponding to an unobserved transition

MZ, K. Hadyńska-Klȩk, EPJ Web Conf 178 (2018) 02014

- opposite effects of $\left\langle 2_{2}^{+}\|\mathrm{E} 2\| \mathrm{O}_{2}^{+}\right\rangle$and $\left\langle 2_{2}^{+}\|\mathrm{E} 2\| 2_{2}^{+}\right\rangle$on the population of 0_{2}^{+} and 2_{2}^{+}states
- population of the 4_{2}^{+}state sensitive only to $\left\langle 2_{2}^{+}\|\mathrm{E} 2\| 2_{2}^{+}\right\rangle$

