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Theoretical description
of low-energy Coulomb excitation

Magda Zielińska

IRFU/DPhN, CEA Saclay

• Why Coulomb excitation?

• Basic introduction to Coulomb-excitation theory

• Approximations and limitations

Low-Energy Coulomb Excitation and Nuclear Deformation,
chapter in: The Euroschool on Exotic Beams - Vol.6,
Lecture Notes in Physics 1005, 43 (2022).
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Coulomb excitation: what’s so great about it?

• population of excited states via purely electromagnetic interaction between the

collision partners

238U

~ 20 fm

}∆t=2 10 s. -22

40Ar

• B(E2) and B(E3) transition probabilities – measure of collectivity

• direct measurement of quadrupole moments including sign – ideal tool to study

shape coexistence

• easy way to access non-yrast states and study their properties

• renaissance of the technique as ideally suited for state-of-the-art RIB facilities:

• beam energies available perfect for Coulomb excitation (2-5 MeV/A)

• high cross sections (excitation of 2+

1 : barns)

• practical at the neutron-rich side
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Basic facts about Coulomb excitation

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).

• The matrix elements 〈f||E2||i〉 describe the excitation and decay pattern →
they are directly related to γ-ray intensities observed in the experiment.

• They are related to the nuclear shape and collectivity.
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Basic facts about Coulomb-excitation experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

→ Cline’s "safe energy" criterion – if the distance between nuclear surfaces
is greater than 5 fm, the nuclear interaction is negligible.

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).

• The matrix elements 〈f||E2||i〉 describe the excitation and decay pattern →
they are directly related to γ-ray intensities observed in the experiment.

• They are related to the nuclear shape and collectivity.
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Basic facts about Coulomb-excitation experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

→ Cline’s "safe energy" criterion – if the distance between nuclear surfaces
is greater than 5 fm, the nuclear interaction is negligible.

→ to properly describe the excitation process – particle detectors needed

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).

• The matrix elements 〈f||E2||i〉 describe the excitation and decay pattern →
they are directly related to γ-ray intensities observed in the experiment.

• They are related to the nuclear shape and collectivity.
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Basic facts about Coulomb-excitation experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

→ Cline’s "safe energy" criterion – if the distance between nuclear surfaces
is greater than 5 fm, the nuclear interaction is negligible.

→ to properly describe the excitation process – particle detectors needed

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).
→ γ-ray detectors needed

• The matrix elements 〈f||E2||i〉 describe the excitation and decay pattern →
they are directly related to γ-ray intensities observed in the experiment.

• They are related to the nuclear shape and collectivity.
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Basic facts about Coulomb-excitation experiments

• Due to the purely electromagnetic interaction the nucleus undergoes a
transition from state |i〉 to |f〉.

→ Cline’s "safe energy" criterion – if the distance between nuclear surfaces
is greater than 5 fm, the nuclear interaction is negligible.

→ to properly describe the excitation process – particle detectors needed

• Then it decays to the lower state, emitting a γ-ray (or a conversion
electron).
→ γ-ray detectors needed

• The matrix elements 〈f||E2||i〉 describe the excitation and decay pattern →
they are directly related to γ-ray intensities observed in the experiment.

• They are related to the nuclear shape and collectivity.
→ from extensive sets of E2 matrix elements quadrupole invariants can be
formed in order to deduce deformation parameters for individual states
defined in the intrinsic frame of the nucleus.
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Safe energy

• Cline’s ”safe energy” criterion: purely electromagnetic interaction if the
distance between nuclear surfaces is greater than 5 fm

Dmin = 1.25 · (A1/3
p +A

1/3
t ) + 5.0 [fm]

• empirical criterion based on systematic studies of inelastic and transfer
cross-sections at beam energies of few MeV/A

• other criteria established for high-energy
Coulomb excitation

• one-neutron sub-barrier transfer recently
observed in Coulomb excitation of 42Ca on
208Pb (K. Hadyńska-Klȩk et al, PRC 97, 024326 (2018).)
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”Safe energy” requirement

...is due to the fact that Dmin has to be sufficiently large.
But it’s not the only way to ensure it!

b

Dprojectile

target

E(θCM ) = 0.72
ZPZT
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·
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1

sin
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2

)

)

[MeV ]

Two possibilities to prepare an experiment:
• choose adequate beam energy (D > Dmin for all θ)

low-energy Coulomb excitation

• limit scattering angle, i.e. select impact parameter b (Eb, θ) > Dmin

high-energy Coulomb excitation
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Dependence of cross sections on energy

74Zn on 208Pb 40S on 197Au

Beam energy [MeV/A]
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A. Illana et al, submitted to PRC T. Glasmacher, NPA 693 (2001) 90

• low-energy Coulomb excitation: maximum cross section for single- and
multi-step excitation at ∼4-5 MeV/A
• stronger dependence of multi-step excitation cross sections on energy

• only single-step excitation important for energies of tens or hundreds
MeV/A; slow decrease of cross section with energy
• possibility to use very thick targets (g/cm2) to compensate for that
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What else the cross sections depend on?

• strength of the electromagnetic field: atomic
number of the collision partner

• beam energy

• difference in excitation energy between the initial
and final levels

• scattering angle

• transition probabilities

• transition multipolarities

• E2 excitation dominates, followed by E3; other
multipolarities (including magnetic transitions)
usually negligible in low-energy
Coulomb-excitation process

first perturbation: σ =
(

Z1e
~v

)2
a
−2(λ+1)

B(Eλ) · fEλ(ξ)

with adiabacity parameter ξ = ∆Ea
~v
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Beyond the first perturbation

• Electromagnetic interaction well-known → one can easily calculate
Coulomb-excitation cross section for any states of the investigated
nucleus when its internal structure is known (i.e. matrix elements of
electromagnetic transitions)

• Straightforward method – quantum-mechanical treatment: high number
of partial waves, coupled channel equations... not very practical :(

• Simplified and replaced by a semiclassical approach without a
significant loss of accuracy
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Simplified description of Coulomb excitation

• Projectile is moving along a hyperbolic orbit and excitation of nuclear
states is caused by the time-dependent electromagnetic field between the
collision partners

• The trajectories are described by the classical equations of motion,
quantum mechanics is used to describe the effect of the electromagnetic
field on the nucleus

• Other simplifying assumptions:
• small energy transfer
• interaction expanded in a multipole series and only monopole-multipole

terms taken into account
• time separation of the collision (10−19s) and deexcitation process

(>10−13s)



Magda Zielińska, CEA Saclay GOSIA Workshop, HIL Warsaw, March 27-30, 2023 - p. 14/22

Validity of classical trajectories

• trajectories can be described by the classical equations of motion,
excitation process is described using quantum mechanics.

b

Dprojectile

target

λprojectile ≪ D
⇒ Sommerfeld parameter η

η = D
2λ̄ =

ZpZte
2

~v
≫ 1

• condition well fulfilled in heavy-ion
induced Coulomb excitation

• semiclassical treatment is expected to deviate from the exact calculation
by terms of the order ∼ 1/η: most important systematic error in
Coulomb-excitation analysis
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Limitation to monopole-multipole terms

The excitation process can be described by the time-dependent Hamiltonian H:

H = HP + HT + V(r(t))

HP/T : free Hamiltonian of the projectile/target nucleus

V(t) : time-dependent electromagnetic interaction

If the wave function is expressed by eigenfunctions of the free HP/T :

ψ(t) =
∑

n

an(t)φn

one gets a set of coupled equations for time-dependent excitation amplitudes an(t)

i~
dan(t)

dt
=

∑

m

〈φn|V(t)|φm〉 exp(i(En − Em)/~)am(t)

Then V(t) can be expanded in multipoles:

V(r(t)) = ZTZPe
2/r monopole-monopole (Rutherford) term

+
∑

λµ VP(Eλ, µ) +
∑

λµ VT(Eλ, µ) electric multipole-monopole excitation,

+
∑

λµ VP(Mλ, µ) +
∑

λµ VT(Mλ, µ) magnetic excitation (small at low v/c)

+ higher order multipole-multipole terms (neglected – estimated at ∼ 0.5 %)
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Multi-step excitation and coupled equations

i~
dan(t)

dt
=

∑

m,λ

〈φn‖M̂λ‖φm〉 exp(i(En − Em)/~)am(t) M̂ = E,M

• in heavy-ion induced Coulomb excitation the
interaction strength gives rise to multiple
excitation

• a nuclear state can be populated directly, via
several intermediate states

• excitation probability of an individual state
may depend on many matrix elements
involved in different excitation paths

• high number of coupled equations for
excitation amplitudes an(t)

• dedicated data analysis codes needed
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(excitation cross sections σ are Rutherford cross sections

multiplied by the excitation probability |an|
2)
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Deexcitation process

For a given set of matrix elements 〈φn‖M̂λ‖φm〉 the set of coupled
equations

i~
dan(t)

dt
=

∑

m,λ

〈φn‖M̂λ‖φm〉 exp(i(En − Em)/~)am(t)

is solved in order to determine level populations.
The same set of matrix elements describes the deexcitation process:

P (M̂λ; Ii → If ) =
8π(λ+ 1)

λ((2λ+ 1)!!)2
·
1

~
·

(

Eγ

~c

)2λ+1

·B(M̂λ; Ii → If )

B(M̂λ; Ii → If ) =
1

2Ii + 1
〈If‖M̂λ‖Ii〉

2

The calculation includes effects influencing γ-ray intensities: internal
conversion, γ-ray angular distribution, its attenuation due to finite size of Ge
detectors, deorientation
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GOSIA code

GOSIA: Rochester - Warsaw semiclassical Coulomb excitation
least-squares search code

Developed in early eighties by T. Czosnyka, D. Cline, C.Y. Wu (Bull. Am.
Phys. Soc. 28 (1983) 745.) and continuously upgraded

level scheme

particle and    -ray
detector
geometry

measured   -ray
intensities

available
spectroscopic data

BR, T  ,  , Q
minimisation
procedure

error estimation 

set of matrix elements quadrupole shape
 invariants

shape parameters

γ

δγ
1/2χ2
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Approximations used in GOSIA

1. semi-classical approximation
• symmetrisation of the trajectory to take into account the energy transfer

2. limitation to the monopole-multipole term

3. other effects taken into account in the description of the excitation
process:

• correction for the dipole polarisation effect: quadrupole interaction V(E2)
multiplied by a factor

1− d ·
EpAt

Z2
t (1 +Ap/At)

a

r

where d = 0.005 (empirical E1 polarisation strength, from photo-nuclear
absorption cross section or GDR energy + dipole sum rule)
Alder and Winther, Coulomb excitation, appendix J

The default value seems to be inadequate for ligth nuclei, cf. M. Kumar Raju,

PLB 777 (2018) 250. Otherwise a minor effect: 104Ru – 10% change of
population of 10+

γ if effect increased 2 times (J. Srebrny, NPA 766, 25 (2006))

• integration over scattering angles covered by particle detectors and
incident energy (beam stopping in the target) – changing meshpoints may
give an effect of few %, especially for multi-step excitation
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Effects taken into account when describing decay

• start from statistical tensors calculated in the excitation stage
• information on excitation probability and initial sub-state population

• cascade feeding from higher-lying states

• deorientation of the angular distribution (due to recoil in vacuum):
Brenn and Spehl two-state model:
104Ru – 2% change of matrix elements if effect increased by 20%

• relativistic transformation of solid angles

• attenuation due to finite size of gamma-ray detectors

• simplified (cylindrical) detector geometry (see M. Schumaker et al, PRC 80,

044325 (2009) for an estimate of effects of this simplification)

• all approximations have usually an effect ∼ 5% on gamma-ray intensities
(often similar to statistical uncertainties, increasing with number of steps
needed)

• uncertainties lower than this are rather suspicious (unless they reflect the
precision of a lifetime measurement, but the quality of such measurement
should also be verified)
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Number of parameters versus number of data points

• number of matrix elements coupling low-lying states is higher than
number of transitions observed in a Coulomb-excitation experiment

• some of them have much smaller influence on gamma-ray intensities than
others

• even if angular dependence of cross sections is measured, often problem
remains underdetermined
• especially if E1, E3 matrix elements are declared, or for odd-mass

nuclei – M1

• additional spectroscopic data needed
• these data are not used to fix any of the parameters, but enter the χ2

function exactly like gamma-ray intensities

• in rare very undetermined cases theoretical relations between the MEs
may be used (which couplings are negligible, similar, etc...)
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Global vs local minimum

Standard question: is this a unique solution, or maybe a different
combination of matrix elements can reproduce the experimental data
equally well?

Genetic Algorithm in GOSIA: JACOB (P.J. Napiorkowski)

GOSIA:
• often trapped in a local minimum

• various starting points have to be carefully checked (combinations of signs
and magnitudes)

• only for very simple cases ”plug and play”

JACOB:
• scan of the χ2 surface, ”promising” minima localised

• integration procdure repeated for each of them, real solutions identified

• alternative method for error estimation (in development)
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