COPIN 2023

High-Symmetry point groups in nuclear structure and their experimental manifestations

Nr. 04-113

A. Góźdź

Institute of Physics and Institute of Informatics, University of Maria Curie-Skłodowska, Lublin, Poland

20-21 November 2023, Warsaw

COPIN collaborators

J. Dudek

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67 000 Strasbourg, France

A. Pędrak

National Centre for Nuclear Research, Warsaw, Poland
I. Dedes

Institute of Nuclear Physics Polish Academy of Sciences, PL-31 342 Kraków, Poland
J. Yang Institute of Physics, Marie Curie-Skłodowska University, PL-20 031 Lublin, Poland
$* *$

- Phys. Rev. C 105, 034348 (2022).
- Phys. Rev. C 106, 054314 (2022).
- Phys. Rev. C 107, 054304 (2023)
J. Yang, J. Dudek, I. Dedes, A. Baran, D. Curien, A. Gaamouci,
A. Góźdź, A. Pędrak

Symmetry

Symmetry is relative to our knowledge and technical possibilities to distinguish physical objects.

Let " \sim " be an equivalence relation distinguishing physical objects belonging to the set X, then the symmetry S of an object \mathcal{O} is the one-to-one transformation $\hat{S}: X \rightarrow X$:

$$
\hat{S} \mathcal{O} \sim \mathcal{O}
$$

i.e. \mathcal{O} is invariant in respect to the transformation \hat{S}.

32 point groups (without icosahedral group)

Symmetry of a Hamiltonian \hat{H}

$\operatorname{Sym}(\hat{H})=\mathrm{G}:$

$$
\text { For all } g \in \mathrm{G} \Rightarrow \hat{g} \hat{H} \hat{g}^{-1}=\hat{H}
$$

- Ireducible representations: degeneracy of the energy spectrum.
- Equivalent representations. Decomposition of the state space into invariant subspaces (multiplicity quantum numbers).
- Selection rules.
- Wigner-Eckart theorem.

Degeneracy of energy spectrum

Energy spectrum degeneracy of \hat{H} with a symmetry G:

$$
\begin{aligned}
& \hat{H}|\nu \Gamma a\rangle=E_{\nu \Gamma}|\nu \Gamma a\rangle \\
& \hat{H} \hat{g}|\nu \Gamma a\rangle=E_{\nu \Gamma} \hat{g}|\nu \Gamma a\rangle
\end{aligned}
$$

for all $g \in \mathrm{G}, \nu=1,2, \ldots, n_{\Gamma}$ (multiplicity), $a=1,2, \ldots, \operatorname{dim}[\Gamma]$.
For fixed ν and Γ the subspace $\operatorname{Lin}\{\hat{g}|\nu \Gamma a\rangle: g \in \mathrm{G}\}$ is an invariant irreducible subspace $\mathcal{K}_{\nu \Gamma}$ of \mathcal{K}, i.e.,

$$
\mathcal{K}=\bigoplus_{\Gamma} \bigoplus_{\nu=1}^{n_{\Gamma}} \mathcal{K}_{\nu \Gamma}
$$

Degeneracy s_{Γ} (it means $a=1,2, \ldots, s_{\Gamma}$) of the energy spectrum $\left\{E_{\nu \Gamma}\right\}$ is equal to the dimension of i.r. [Г], i.e., $s_{\Gamma}=\operatorname{dim}\left(\mathcal{K}_{\nu \Gamma}\right)$.

Structure of any Hamiltonian \hat{H}

Spectral decomposition of a general \hat{H}

$$
\hat{H}=\sum_{\rho} E_{\rho}|\rho\rangle\langle\rho|
$$

ρ represents a set of required quantum numbers.

3D Harmonic oscillator

$$
\hat{H}=\sum_{N} \hbar \omega\left(N+\frac{3}{2}\right) \sum_{L, M}|N L M\rangle\langle N L M|
$$

Spectrum degeneracy: $s_{N}=$ (number of allowed pairs (L, M) for fixed N),
In the chain $\mathrm{SU}(3) \subset \mathrm{SO}(3)$ no multiplicity n_{L} higher than 1 , $L=N, N-2, \ldots$

3D Harmonic oscillator - modified

3D Harmonic oscillator with rotational spectrum

$$
\hat{H}=\sum_{L} \hbar^{2} L(L+1) \sum_{N}\left(\sum_{M}|N L M\rangle\langle N L M|\right)
$$

Spectrum degeneracy:
$s_{L}=($ number of allowed pairs (N, M) for fixed $L)$,
Multiplicity $n_{L}=\infty$

Bohr Hamiltonian \hat{H}

Bohr Hamiltonian 5D Harmonic oscillator

$$
\hat{H}=\sum_{N} \hbar \omega\left(N+\frac{5}{2}\right) \sum_{v, n_{\Delta}, L, M}\left|N v n_{\Delta} L M\right\rangle\left\langle N v n_{\Delta} L M\right|
$$

Bohr Hamiltonian: N, L-dependent spectrum

$$
\hat{H}=\sum_{N L} E_{N L} \sum_{v, n_{\Delta}}\left(\sum_{M}\left|N v n_{\Delta} L M\right\rangle\left\langle N v n_{\Delta} L M\right|\right)
$$

Spectrum degeneracy:
$s_{(N, L)}=\left(\right.$ number of allowed triplets $\left(v, n_{\Delta}, M\right)$ for fixed $\left.N, L\right)$. Multiplicity:
$n_{L}=\left(\right.$ number of allowed pairs $\left(v, n_{\Delta}\right)$ for fixed $\left.N, L\right)-n_{L}$ states with the angular momentum L is observed.

Degeneracy of the energy spectrum

Time reversal can change degeneracy

Rotations are not invariant with respect to the time reversal operation \Rightarrow the points groups are affected by the time reversal.

Wigner: Three types of representations:
$\mathrm{I}[\Gamma]=\left[\Gamma^{*}\right]$ (real).
II $[\Gamma]$ is complex and not equivalent to $\left[\Gamma^{*}\right]$.
III $[\Gamma]$ is complex and equivalent to $\left[\Gamma^{*}\right]$ but cannot be made real.

For even-even nuclei there are only types I and II

I No additional degeneracy due to time reversal.
II The degeneracy is doubled (Kramer's theorem).

Table 29. Full Rotation Group Compatibility Table for the Group C_{4}

$D_{0}^{ \pm}$	Γ_{1}
$D_{1}^{ \pm}$	$\Gamma_{1}+\Gamma_{3}+\Gamma_{4}$
$D_{2}^{ \pm}$	$\Gamma_{1}+2 \Gamma_{2}+\Gamma_{3}+\Gamma_{4}$
$D_{3}^{ \pm}$	$\Gamma_{1}+2 \Gamma_{2}+2 \Gamma_{3}+2 \Gamma_{4}$
$D_{4}^{ \pm}$	$3 \Gamma_{1}+2 \Gamma_{2}+2 \Gamma_{3}+2 \Gamma_{4}$
$D_{5}^{ \pm}$	$3 \Gamma_{1}+2 \Gamma_{2}+3 \Gamma_{3}+3 \Gamma_{4}$
$D_{6}^{ \pm}$	$3 \Gamma_{1}+4 \Gamma_{2}+3 \Gamma_{3}+3 \Gamma_{4}$
$D_{1 / 2}^{ \pm}$	$\Gamma_{5}+\Gamma_{6}$
$D_{3 / 2}^{ \pm}$	$\Gamma_{5}+\Gamma_{6}+\Gamma_{7}+\Gamma_{8}$
$D_{5 / 2}^{ \pm}$	$\Gamma_{5}+\Gamma_{6}+2 \Gamma_{7}+2 \Gamma_{8}$
$D_{7 / 2}^{ \pm}$	$2 \Gamma_{5}+2 \Gamma_{6}+2 \Gamma_{7}+2 \Gamma_{8}$
$D_{9 / 2}^{ \pm}$	$3 \Gamma_{5}+3 \Gamma_{6}+2 \Gamma_{7}+2 \Gamma_{8}$
$D_{11 / 2}^{ \pm}$	$3 \Gamma_{5}+3 \Gamma_{6}+3 \Gamma_{7}+3 \Gamma_{8}$
$D_{13 / 2}^{ \pm}$	$3 \Gamma_{5}+3 \Gamma_{6}+4 \Gamma_{7}+4 \Gamma_{8}$

T_{d} and O

"Accidental" degeneracy of energy spectrum

Assume, the quantum numbers ν can be split into two sets $\nu=\left(\nu^{\prime}, \nu^{\prime \prime}\right)$, where $\nu^{\prime}=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{s}\right)$ and $\nu^{\prime \prime}=\left(\nu_{s+1}, \nu_{s+2}, \ldots, \nu_{r}\right)$. Energy spectrum degeneracy of \hat{H} with a symmetry G:

$$
\hat{H}=\sum_{\Gamma} \sum_{\nu^{\prime \prime}} E_{\nu^{\prime \prime}, \Gamma} \sum_{\nu^{\prime}}\left(\sum_{a}\left|\nu^{\prime}, \nu^{\prime \prime}, \Gamma, a\right\rangle\left\langle\nu^{\prime}, \nu^{\prime \prime}, \Gamma, a\right|\right)
$$

"Multiplicity" degeneracy

Observed accidental degeneracy of the energy level $E_{\nu^{\prime \prime}, \Gamma}$ $=$ number of elements $\nu^{\prime}=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{s}\right)$ for fixed Γ and $\nu^{\prime \prime}=\left(\nu_{s+1}, \nu_{s+2}, \ldots, \nu_{r}\right)$.

Partial Symmetries

Two symmetries in one body - partial symmetries $1 / 2$

Nuclear surface: $\alpha_{20}=10 \rightarrow \overline{\mathrm{SO}(2)} ; \alpha_{33}=0.5 \rightarrow \overline{\mathrm{C}}_{3}$

$$
\begin{aligned}
& R(\{\alpha\} ; \theta, \phi)=R_{0}(1+ \\
& \left.+\alpha_{20}^{\star} Y_{20}(\theta, \phi)+\alpha_{33}^{\star} Y_{22}(\theta, \phi)+\alpha_{3,-3}^{\star} Y_{3,-3}(\theta, \phi)\right)
\end{aligned}
$$

Partial-symmetries, non-orthogonal decomposition $2 / 2$

The schematic quadrupole + octupole model Hamiltonian:

$$
\begin{gathered}
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{v i b}+\hat{\mathcal{H}}_{r o t} \\
\hat{\mathcal{H}}_{v i b}=\hat{\mathcal{H}}_{v i b ; 2}\left(\alpha_{2}\right)+\hat{\mathcal{H}}_{v i b ; 3}\left(\alpha_{3}\right) \\
\hat{\mathcal{H}}_{r o t}=\hat{\mathcal{H}}_{r o t}(\Omega)
\end{gathered}
$$

If the Hamiltonian is related to the above nuclear shape: $\operatorname{Sym}\left(\hat{\mathcal{H}}_{v i b ; 2}\right)=\overline{\operatorname{SO}}(2)_{v i b} \quad \operatorname{Sym}\left(\hat{\mathcal{H}}_{v i b ; 3}\right)=\overline{\mathrm{C}}_{3 ; v i b} \quad \operatorname{Sym}\left(\hat{\mathcal{H}}_{r o t}\right)=\overline{\mathrm{G}}_{r o t}$

Open problem: partial selection rules.

Partial-symmetries, orthogonal decomposition

Spectral theorem

Assume the discrete spectrum of $\hat{\mathcal{H}}$, then:

$$
\hat{\mathcal{H}}=\sum_{\nu} \epsilon_{\nu} P_{\nu}
$$

Notation:
A) The operator A has the symmetry G:

$$
\mathrm{G}=\operatorname{Sym}(A)
$$

B) Collection of the projectors P_{ν} having the same symmetry G:

$$
\mathcal{O}_{\mathrm{G}}=\left\{P_{\nu}: \operatorname{Sym}\left(P_{\nu}\right)=\mathrm{G}\right\}
$$

Partial-symmetries, orthogonal decomposition

The partial Hamiltonians:

$$
\hat{\mathcal{H}}_{\mathrm{G}}=\sum_{P_{\nu} \in \mathcal{O}_{\mathrm{G}}} \epsilon_{\nu} P_{\nu}
$$

$\hat{\mathcal{H}}_{\mathrm{G}}$ has the symmetry G.
Orthogonal decomposition of $\hat{\mathcal{H}}$ into the partial Hamiltonians:

$$
\hat{\mathcal{H}}=\sum_{\mathrm{G}} \hat{\mathcal{H}}_{\mathrm{G}}
$$

$\mathrm{G} \neq \mathrm{G}^{\prime} \Rightarrow$

$$
\hat{\mathcal{H}}_{\mathrm{G}} \hat{\mathcal{H}}_{\mathrm{G}^{\prime}}=0
$$

Eigenproblem

To solve the eigenequation for $\hat{\mathcal{H}}=\sum_{\mathrm{G}} \hat{\mathcal{H}}_{\mathrm{G}}$ it is sufficient to solve the eigenproblems for all partial Hamiltonians:

$$
\hat{\mathcal{H}}_{G}|\mathrm{G} ; \mu \Gamma a\rangle=\epsilon_{\mu \Gamma}^{\mathrm{G}}|\mathrm{G} ; \mu \Gamma a\rangle .
$$

By definition, for $\mathrm{G}^{\prime} \neq \mathrm{G}$

$$
\hat{\mathcal{H}}_{\mathrm{G}^{\prime}}|\mathrm{G} ; \mu \Gamma a\rangle=0 .
$$

Here: μ labels the equivalent i.r. of the group G. We get

$$
\hat{\mathcal{H}}|\mathrm{G} ; \mu \Gamma a\rangle=\epsilon_{\mu \Gamma}^{\mathrm{G}}|\mathrm{G} ; \mu \Gamma a\rangle .
$$

and reversely.

Example: The vibrator+rotor Hamiltonian

The Hamiltonian (all is in the intrinsic frame):

$$
\begin{gathered}
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{v i b}+\sum_{l=1}^{3} A\left(\hat{n}_{l}\right) \hat{J}_{l}^{2}, \\
\hat{\mathcal{H}}_{v i b}=\hbar \omega \sum_{l} \hat{n}_{l},
\end{gathered}
$$

where $\hat{n}_{l}=$ number of phonon operators in $l=1,2,3$ directions, \hat{J}_{l} are angular momentum operators.
The vibrations and rotations are independent:

$$
\left[\hat{n}_{l}, \hat{J}\right]=0, \text { for all } l=1,2,3 .
$$

Definition of the logical function δ :

$$
\delta(Q)= \begin{cases}1 & \text { if } Q=\text { True } \\ 0 & \text { if } Q=\text { False }\end{cases}
$$

Sub-Hamiltonians 1/2

The sub-Hamiltonians of $\hat{\mathcal{H}}$ (laboratory symmetries omitted):

$$
\begin{aligned}
& \hat{\mathcal{H}}_{\mathrm{O}(3)}=\delta\left(\hat{n}_{1}=\hat{n}_{2}=\hat{n}_{3}\right)\left(\hat{\mathcal{H}}_{v i b}+A\left(\hat{n}_{3}\right) \hat{J}^{2}\right) \\
& \hat{\mathcal{H}}_{\mathrm{O}(2)_{l_{1}}}=\delta\left(\hat{n}_{l_{2}}=\hat{n}_{l_{3}}\right) \delta\left(\hat{n}_{l_{1}} \neq \hat{n}_{l_{2}}\right)\left(\hat{\mathcal{H}}_{v i b}+\right. \\
& \left.+A\left(\hat{n}_{l_{1}}\right) \hat{J}_{l_{1}}^{2}+A\left(\hat{n}_{l_{2}}\right)\left(\hat{J}_{l_{2}}^{2}+\hat{J}_{l_{3}}^{2}\right)\right) \\
& \hat{\mathcal{H}}_{\mathrm{D}_{2 h}}=\delta\left(\hat{n}_{1} \neq \hat{n}_{2} \neq \hat{n}_{3} \neq \hat{n}_{1}\right)\left(\hat{\mathcal{H}}_{v i b}+\sum_{l=1}^{3} A\left(\hat{n}_{l}\right) \hat{J}_{l}^{2}\right)
\end{aligned}
$$

For $\hat{\mathcal{H}}_{\mathrm{O}(2)_{l_{1}}}, l_{1} \neq l_{2} \neq l_{3} \neq l_{1}$, where $l_{1}, l_{2}, l_{3}=1,2,3$.
The symmetry of $\hat{\mathcal{H}}_{v i b}$ is fixed $=\overline{\mathrm{SU}(3)}$.

$$
\hat{\mathcal{H}}=\hat{\mathcal{H}}_{\mathrm{O}(3)}+\sum_{l=1}^{3} \hat{\mathcal{H}}_{\mathrm{O}(2)_{l}}+\hat{\mathcal{H}}_{\mathrm{D}_{2 h}}
$$

Sub-Hamiltonians 2/2

- The eigenproblem of the sub-Hamiltonians:

$$
\hat{\mathcal{H}}_{\mathrm{G}}\left|[\mathrm{G}] n_{1} n_{2} n_{3} ; J M \mu\right\rangle=\epsilon_{n_{1} n_{2} n_{3} ; J \mu}^{\mathrm{G}}\left|[\mathrm{G}] n_{1} n_{2} n_{3} ; J M \mu\right\rangle
$$

The eigenvaules and eigenvectors solve the eigenproblem of the full Hamiltonian $\hat{\mathcal{H}}$.

- The sub-Hamiltonians for the symmetries $\mathrm{O}(3)$ and $\mathrm{O}(2)$ have analytical solutions:

$$
\phi_{\nu}(\alpha, \Omega) \equiv \phi_{n_{1} n_{2} n_{3} ; J M K}(\alpha, \Omega)=\left(\Pi_{l=1}^{3} u_{n_{l}}\left(\alpha_{l}\right)\right) r_{M K}^{J}(\Omega)
$$

where $u_{n}(b, \alpha)$ are 1-D harmonic oscillator functions, $b=\sqrt{m \omega / \hbar}$ is the h.o. length, $r_{M K}^{J}(\Omega)$ are complex conjugated and normalized Wigner functions for $\mathrm{SO}(3)$, $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.

EMG transitions

Clebsch-Gordan series and coefficients (multiplicities):

$$
\begin{gathered}
\Delta^{\Gamma_{1}} \times \Delta^{\Gamma_{2}} \sim \bigotimes_{\Gamma} n_{\Gamma_{1} \Gamma_{2}}^{\Gamma^{\prime}} \Delta^{\Gamma} \\
\Psi_{c}^{\Gamma, \alpha}=\sum_{a=1}^{\operatorname{dim}\left(\Gamma_{1}\right)} \sum_{b=1}^{\operatorname{dim}\left(\Gamma_{2}\right)}\left(\Gamma_{1} a \Gamma_{2} b \mid \Gamma c ; \alpha\right) \phi_{a}^{\Gamma_{1}} \xi_{b}^{\Gamma_{2}}
\end{gathered}
$$

Irreducible tensor for a group G

$$
\hat{g} Q_{a}^{\Gamma} \hat{g}^{-1}=\sum_{k=1}^{\operatorname{dim}(\Gamma)} \Delta_{k a}^{\Gamma}(g) Q_{k}^{\Gamma}
$$

Wigner-Eckart theorem:

$$
\left\langle\phi_{a}^{\Gamma_{1}}\right| Q_{k}^{\Gamma_{1}}\left|\xi_{b}^{\Gamma_{2}}\right\rangle=\sum_{\alpha}^{n_{\Gamma_{1} \Gamma_{2}}^{\Gamma}}\left(\Gamma a \Gamma_{1} b \mid \Gamma_{2} l ; \alpha\right)^{\star}\left\langle\phi^{\Gamma} \| Q^{\Gamma_{1}}\right|\left|\xi^{\Gamma_{2}}\right\rangle_{\alpha}
$$

Experiment Argone 2009, spectrum ${ }^{156}$ Dy

Figure: Spectrum ${ }^{156}$ Dy (Lee Riedinger)

Pure octupole model - collective E λ transitions

IF the Euler angles are chosen to fix octupoles in the principal axes frame.
For pure octupole T_{d} collective model $\left(\bar{\alpha}_{3 \mu}=0\right.$ for $\left.\mu \neq \pm 2\right)$ the operators:

- $Q_{1 \mu}^{l a b}=0$, because of $(3030 \mid 10)=0$.
- $Q_{2 \mu}^{l a b}=0$, because of $(323-2 \mid 20)=0$.

The only non-zero moment is the octupole one.

Problems

???
 ?????????
 ?????????????????
 ????????????????????????????
 ????????????????????????????????????? ???

