NUCLEAR PHYSICS STUDIED WITH ANTIPROTONS

Sławomir Wycech: Warszawafor Guillaume Hupin and Jaume Carbonell: Orsaywith help of Alireza Dehghani: Orsay

MOTIVATION

PUMA at CERN : From Alexandre Obertelli

Fig. 7: Itinerary of PUMA from ELENA to ISOLDE.

PRODUCES ANTIPROTONS COLLIDES WITH UNSTABLE NUCLEI MAKES ANTIPROTONIC ATOMS

waits for X ray cascade, and nuclear capture

DETECTS π MESONS FROM ANNIHILATION FINDS MESONIC CHARGE DISTRIBUTIONS

THIS COLLABORATION STUDIES

ATOMIC ORBITS OF NUCLEAR CAPTURE RATIO σ (Pbar – n) / σ (Pbar – p)

→ NEUTRON HALO (SKIN)

Expectations - an example

from A. Obertelli

n/p ratio expected at capture radius

Pbar nuclear absorption region

Z= 50 , N = 88 : a fancy nucleus to study by PUMA Expected atomic – nuclear density overlap

A JOB FOR THIS COLLABORATION

FIND ATOMIC ORBITS FROM WHICH PIONIC DECAYS HAPPEN

EXRRACTION OF CAPTURE ORBITALSFROM TOTALMESONICCHARGEINITIALQ = 0capture on proton5 mesons mittedQ = -1capture on neutron5 mesons emitted

ANALYSIS OF FINAL STATE MESONIC REACTIONS

- (1) FIT PARAMETERS TO P(Q) DATA
- (2) CALCULATE PARAMETERS
- (3) COMPARE FITTED TO CALCULATED

extract the orbits of captures

calculate neutron haloes

OLD DATA : N, C, Ti, Ta, Pb analysed

S.W.,K.P. Phys Rev. C (2023) 108

DOMINANT CAPTURE ORBITS : THE LOWEST STATES REACHED IN ATOMIC CASCADE

Rms RADII OF NEUTRON DENSIES CONSISTENT WITH OTHER EXPERIMENT

Problem: 10 % uncertainty of absorption ratio σ (Pbar - n) / σ (Pbar - p)

Problem : mesonic charge exchanges are sensitive to np correlations

Problem of interest : Nuclear states of antiprotons

ANOTHER ESSENTIAL JOB FOR THIS COLLABORATION

(1) COMPARE MODELS FOR NUCLEON_ANTINUCLEON INTERACTIONS

(2) EXTEND BEST MODEL TO LOW ENERGY, FIND BOUND STATES

COMPARISON OF MODELS : RESULTS

J.Carbonell, G.Hupin. S.W. : EPJA59(2023)259

IMPROVING N-Nbar INTERACTION POTENTIAL

DATA CROSS SECTIONS ONLY , MANY PARTIAL WAVES (NO PAULI) NO LOW ENERGY DATA

Fig. 1 Integrated strong \overline{NN} cross sections – elastic σ_e (black), annihilation σ_a (red), charge-exchange σ_{ce} (green) and their sum σ_t (blue) – as functions of the \overline{N} laboratory momenta for DR2 (dashed dotted line), KW (dashed line) and Paris 2009 (solid line) optical models. The results of the Nijmegen Partial Wave analysis [7] are indicated by filled circles.

BES III: X(1869) **P-Pbar** BOUND **STATE INDICATED ISOSPIN UNNOWN**

X(2170)

S WAVE SCATTERING AMPLITUDES

SOME INDICATE ATTRACTION OR DEEPLY BOUND STATE (negative)

SOME INDICATE BOUND STATE CLOSE TO THRESHOLD (positive)

Fig. 15 Real parts of ${}^{1}S_{0}$ potentials for both isospins (T)

Antiprotonic – hydrogen : selected partial waves

 P-Pbar scattering lengths : large differences scattering volumes : dramatic differences

state		Exp	Paris 2009	Jülich	KW	DR2
¹ S ₀	Ν̈́Ν		1.02 - i 0.87	0.42 - i 0.91	0.52 - i 0.99	0.65 - i 0.82
	$\bar{\mathbf{p}}\mathbf{p}$	0.493(92) - i 0.732(146)	0.92 - i 0.67	0.50 - i 0.71	0.57 - i 0.77	0.68 - i 0.64
$^{3}SD_{1}$	ΝN		0.91 - i 0.62	0.93 - i 0.92	1.01 - i 0.79	1.09 - i 0.75
	$\bar{\mathbf{p}}\mathbf{p}$	0.933(45) - i 0.604(51)	0.82 - i 0.50	0.90 - i 0.74	0.92 - i 0.63	0.98 - i 0.59
S-averaged	- NN		0.94 - i 0.68	0.80 - i 0.92	0.89 - i 0.84	0.98 - i 0.77
	$\bar{\mathbf{p}}\mathbf{p}$	0.823(57) - i 0.636(75)	0.85 - i 0.54	0.80 - i 0.74	0.83 - i 0.67	0.90 - i 0.60
$^{3}P_{0}$	Ν̈́Ν		-3.02 - i 2.50	-0.32 - i 4.01	-3.20 - i 2.28	-2.93 - i 1.83
	$\bar{\mathbf{p}}\mathbf{p}$	-5.68(123) - i 2.45 (49)	-2.74 - i 2.46	-0.32 - i 3.85	-2.81 - i 1.99	-2.53 - i 1.62

Table 5 Isospin averaged $(a_{\bar{N}N})$ and $\bar{p}p$ scattering lengths are compared with those obtained from hydrogen atom level shifts and widths, in fm for S and fm³ for P states. The $\bar{p}p$ values including Coulomb and Δm corrections are taken from [18] for DR2 and KW, from [19] for Paris and from [12] for Jülich model. The statistical averaged value for S-wave is defined as $({}^{1}S_{0}+3 {}^{3}S_{1})/4$ and is given with averaged errors.

HENCE, NEXT TOPICS FOR THE COLLABORATION

1) FIND NEW MODEL FOR N-Nbar INTERACTIONS

INCLUDING : NIJMEGHEN PARTIAL WAVE ANALYSIS LEVEL SHIFTS AND WIDTHS FOR H, 2H, 3He , 4He ATOMS

(2) FIND ANTIPROTONIC NUCLEAR STATES "AB INITIO "CALCULATIONS , Z <= 6

(3) STUDY SHORT RANGE p-n CORRELATION S IN NUCLEI WITH PUMA, a by-product of the experiment

THANK YOU

Appendix - if needed

	a_1	r_1	a_1	r_1	a_1	r_1	a_1	r_1
T=0	¹¹ P ₁		¹³ P ₀		¹³ P ₁		$^{3}PF_{2}$	
Nijm*	-3.34-1.22i	9.3-1.2i	-3.06-7.23i	-1.7-1.5i	4.36-0.00i	-3.5-0.0i	_	_
Jülich	-2.87-0.36i	_	-2.83-7.82i	_	4.61-0.05i		-0.74-1.13i	_
Paris 09	-3.62-0.34i	3.8-0.8i	-8.78-4.99i	0.23-1.1i	5.12-0.02i	-3.4 - 0.02	-0.49-0.87i	_
KW	-3.36-0.62i	3.7-1.6i	-8.83-4.45i	0.25-0.97i	4.73-0.08i	-3.5-0.1i	-0.46-1.09i	_
DR2	-3.28-0.78i	4.2-2.3i	-8.53-3.50i	0.63-1.0i	5.14-0.09i	-3.4-0.1i	-0.59-0.85i	-
T=1	³¹ P ₁		${}^{33}P_0$		³³ P ₁		$^{3}PF_{2}$	
Nijm*	0.66-0.18i	3.3-20i	2.33-0.92i	-10-0.7i	-2.02-0.70i	4.7-2.8i	-	-
Jülich	0.80-0.34i	_	2.18-0.19i	_	-2.04-0.55i	_	-0.48-0.34i	_
Paris 09	1.00-0.77i	-3.7-9.8i	2.74-0.00i	-5.2-0.01i	0.28-4.11i	-3.0-2.0i	-0.13-0.21i	_
KW	0.71-0.47i	-8.3-21i	2.43-0.11i	-5.8-0.43i	-2.17-0.95i	2.7-3.5i	-0.30-0.45i	_
DR2	1.02-0.43i	-11-10i	2.67-0.15i	-5.4-0.53i	-2.02-0.70i	4.6-3.9i	-0.04-0.53i	_

Table 3 P waves $\bar{N}N$ low energy parameters (in fm³) for the considered optical models: Jülich results are taken from Tab 3 of Ref. [12], KW and DR2 from [18], Paris 2009 have been recomputed and are in agreement with [44]. The values of Nijmegen are obtained by extrapolating the phase shifts from Figures 2 and 3.

	a_0	r_0	a_0	r_0
T=0	$^{11}S_0$		$^{13}\mathrm{SD}_1$	
Nijm*	-0.17 -1.01i	-6.9-2.9 i	_	_
Jülich	-0.21 -1.23i	_	1.42-0.88i	—
Paris 09	1.27 -1.18i	-0.53 + 0.14i	1.20-0.80i	_
KW	-0.03 -1.35i	-4.7-7.9i	1.23-0.77i	_
DR2	0.10 -1.07i	-11-6.2i	1.28-0.78i	_
T=1	$^{31}S_0$		$^{33}\mathrm{SD}_1$	
Nijm*	1.02 -0.60i	0.7-1.2i	_	_
Jülich	1.05 -0.58i	_	0.44- $0.96i$	_
Paris 09	0.76 -0.56i	0.9-3.9i	0.61-0.44i	_
KW	1.07 -0.62i	0.7-1.9i	0.78-0.80i	_
DR2	1.20 -0.57i	0.6-1.6i	0.89-0.71i	_

Table 2 S-wave $\overline{N}N$ low energy parameters (in fm) for the considered optical models: Jülich results are taken from Tab 3 of Ref. [12], KW and DR2 from [18], Paris 2009 have been recomputed and are in agreement with [44]. The values of Nijmegen are obtained by extrapolating the phase shifts from Figures 2 and 3.

5

J

CAPTURE ORBITS IN PIONISATION MEASURMENTS

VERSUS X RAY DATA

FIG. 3. Mean widths and shifts of all levels with measurable strong interaction effects. The weight of the different calcium iso-

CHIOCE OF PARAMETERS TO DESCRIBE FINAL MESON INTERACTIONS and P(Q)

$$p p \rightarrow Q_{ini} = 0$$
; $np \rightarrow Q_{ini} = -1$ PARAMETER

ω ~ 0.1-0.2; $\lambda ~ 0.15 - 0.40$

from data

Charge exchange differs from its inverse due to exclusion and Coulomb barrier

Difference depends on nucleon momenta.

Nucleon momenta in a nucleus Fermi gass sector and p-n short range correlations sector. M Duer+ Phys Rev Let 112 J. Lab electron scattering

10⁻¹ 10⁻¹ 208Pb 10⁻² 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Nucleon Momentum p [fm⁻¹]

Ryckebush + Phys L. B792

 ^{12}C ⁸⁴Kr ¹⁰⁸Ag 160 1027AJ 124Xe $n^{[1]}(p) \left[\mathrm{fm}^3
ight]$ 40 Ar 142Nd ⁴⁰Ca 184W 48Cg ²⁰⁸Pb 10^{-2} FAT TAIL 0.00.51.01.5 $\mathbf{2.0}$ 2.53.03.54.0Nucleon Momentum $p \mid \text{fm}^{-1}$

Fig. 2. The momentum distribution for 14 nuclei across the nuclear mass table. The $n^{[1]}(p)$ are computed in LCA with a "hard" central correlation function g_c adopting the normalization convention $\int dp \ p^2 n^{[1]}(p) = A$.

Initiated by Campi and Bouysy , old problem of correlations revived with different physics

J. Ryckebusch et al. / Physics l

state		Exp	Paris 2009	Jülich	KW	DR2
${}^{1}S_{0}$	ΝŇ		1.02 - i 0.87	0.42 - i 0.91	0.52 - i 0.99	0.65 - i 0.82
	ĒΡ	0.493(92) - i 0.732(146)	0.92 - i 0.67	0.50 - i 0.71	0.57 - i 0.77	0.68 - i 0.64
$^{3}SD_{1}$	ŇΝ		0.91 - i 0.62	0.93 - i 0.92	1.01 - i 0.79	1.09 - i 0.75
	ĒΡ	0.933(45) - i 0.604(51)	0.82 - i 0.50	0.90 - i 0.74	0.92 - i 0.63	0.98 - i 0.59
S-averaged	ΝN		0.94 - i 0.68	0.80 - i 0.92	0.89 - i 0.84	0.98 - i 0.77
_	ĒΡ	0.823(57) - i 0.636(75)	0.85 - i 0.54	0.80 - i 0.74	0.83 - i 0.67	0.90 - i 0.60
³ P ₀	ΝŇ		-3.02 - i 2.50	-0.32 - i 4.01	-3.20 - i 2.28	-2.93 - i 1.83
	ĒΡ	-5.68(123) - i 2.45 (49)	-2.74 - i 2.46	-0.32 - i 3.85	-2.81 - i 1.99	-2.53 - i 1.62

Table 5 Isospin averaged $(a_{\bar{N}N})$ and $\bar{p}p$ scattering lengths are compared with those obtained from hydrogen atom level shifts and widths, in fm for S and fm³ for P states. The $\bar{p}p$ values including Coulomb and Δm corrections are taken from [18] for DR2 and KW, from [19] for Paris and from [12] for Jülich model. The statistical averaged value for S-wave is defined as $(^{1}S_{0}+3~^{3}S_{1})/4$ and is given with averaged errors.

SHORT LIFE OF ATOMS

CAPTURE into atomic orbit : emission of a valence AUGER eletron

CASCADE : emission of AUGER electrons

BELOW electron cloud : Emission of X - RAYS

DEATH : nuclear capture emision of \sim five π mesons

SHORT LIFE of ATOMS

Radii = 57 /Z n^2 fm

High I levels $\Psi / r^{I} \sim \text{const}$ inside nuclei

FINAL PRODUCTS

X-rays

Nuclei

Pions

ANTIPROTONIC ATOM - A TOOL TO STUDY NUCLEI

Three different – related measurements

ATOMIC LEVELS via X RAYS

DETECTION OF FINAL COLD NUCLEI

DETECTION OF FINAL PIONS

8

2

3

NUMBER OF DATA / ATOM

Radiochemical measurements of final non excited nuclei Munich – Warsaw / CERN

DETERMINATION OF CAPTURE ORBIT via (A-1)/ TOTAL

ANALYSIS OF COLD CAPTURES

 $\sigma(N-1) = N P_{emissionN}$ $= ----- R_{n/p} f_{HALO}$ $\sigma(Z-1) Z P_{emissionZ}$

 $\begin{array}{ll} R & n/p & \mbox{relative rate of absorptions} & (p-bar n) \ / \ (p-bar p) \\ P_{emission} & \mbox{chance for mesons not to excite the nucleus $~10\%$} \\ Result & \mbox{f}_{HALO} & \mbox{excess of neutrons in the capture region} \\ & \mbox{estimated from σ (A-1) $/ σ (total)} \\ \end{array}$

Presentation : if capture region is known => Rn - Rp = difference of Rms radii is calculated

FIG. 3. Neutron halo factor (defined in the text) as a function of the target neutron separation energy B_n .

WHY NUCLEAR SURFACE IS INTERESTING
* Symmetry energy

 $\beta = (N-Z)/A,$

$$\frac{E}{A}(\rho,\beta) = \frac{E}{A}(\rho,0) + S_N(\rho)\beta^2 + \dots \quad \text{n,p Fermi Gas} \quad S_N = \frac{1}{3}E_F$$

 ρ = density

Droplet Model

 $E_{\text{(binding)}} / A = a_{v} - S_{N} \beta^{2} + \dots$ attractive repulsive due to Pauli

THESE CANCEL AT NUCLEAR SURFACE WITH THE INCREASING NEUTRON/ PROTON RATIO ? NUCLEAR MODEL DEPENDENT

** ARE THERE (np.) or (nnpp) CORRELATIONS AT DISTANT SURFACE. *** WHAT IS THE FERMI MOMENTUM AT SURFACE

OLD CHAMBER EXPERIMENTS

L. Agnew et.al Phys.ReV 118(1960) 1371 W. Bugg et al. Phys.Rev. Lett 31 (1973) 4761 C,Ti ,Ta,Pb hydrogen chamber M.Wade, V.G.Lind Phys Rev D (1976) 1182 C propane chamber

MAGNETIC SPECTROMETER, CERN

J. Riedlberger et al Phys Rev C40 (1989) 2717

Ν

NEWERA OF PIONISATION EXPERIMENTSPUMA PROJECTAT CERN(Alexander Obertelli)

ATOMS BUILT ON UNSTABLE – RADIOACTIVE - NUCLEI

First project : M. Wada , Y. Yamazaki Produce antiprotons at CERN carry to RIKEN : make atoms of unstable nuclei there

FIT TO CARBON DATA

Wade, Lind , Phys Rev D14 (1976) 1184 freon chamber

Q	C [20]	Fit	
+3	0.09(0.1)	0.09	
+2	1.80(0.2)	1.36	
+1	12.5(0.4)	13.02	
0	43.0(0.8)	44.49	
-1	34.5(0.7)	33.90	
-2	6.5(0.5)	6.84	
-3	1.0(0.1)	0.28	
$\langle n^{\pm} \rangle$	2.72(0.03)	2.70	
χ^2		13.1	
$R_{n/p}f^h$		0.75(0.01)	

CONSISTENT with Rp = Rn , R n/p from Paris model , No hydrogen contamination Nitrogen, Riedlberger + PRev C40 (1989) High statistics, No hydrogen contamination, magnetic spectrometer

: Experimental, [21], and fitted	l charge multiplicities	P[Q] in	Nitrogen .
----------------------------------	-------------------------	---------	------------

Q	exp	fit
3	1.2(.2)	0.28
+2	3.9(.4)	2.25
+1	14.2(.8)	15.6
0	39.5(1.0)	40.1
-1	31.1(.8)	32.1
-2	8.0(.5)	8.5
-3	2.1(.3)	0.44
$< n^{\pm} >$	2.89(8)	2.91(0.05)
χ^2		7.5

 $R_{n/p} \cdot f^h = 0.77(.04).$

 ω^+ = 0.16 ; ω^- = .17 ; λ^+ = .16 ; λ^- = 0.10

END POINTS INDICATE DOUBLE PION CHARGE EXCHANGE ON RESIDUAL Carbon = $\alpha\alpha\alpha$

CALCULATIONS OF FINAL STATE INTERACTION PARAMETERS

CALCULATE FINAL STATE PARAMETERS FOR SEVERAL ORBITALS L

FIND L THAT FULFILS

 $\omega(L+1) < \omega(\text{ best fit }) < \omega(L)$ $\lambda(L+1) < \lambda(\text{ best fit }) < \lambda(L)$

Extract probabilities of two dominant orbitals

CALCULATION OF PARAMETERS MESONS ARE FAST average momenta ~ 400 MeV/c \rightarrow eikonal approximation

$$T_{\text{expt}}(\mathbf{r}, \mathbf{k}) = \exp\left[-\lambda_{\text{expt}} \int_0^\infty ds \rho_p(\mathbf{r} - s\widehat{\mathbf{k}})\right].$$

Survival amplitude $T = 1 - \omega$

Average over momenta , directions number of mesons

Charge exchange $\lambda = \sigma^*$ Pauli Blocking factor NN absorption $\rho \rightarrow \rho\rho$ mostly surface mostly centre

NUCLEAR PHYSICS OF PIONS

π NN → N Δ(1232) \rightarrow πNN absorption via unitarity many old models fairly consistent with phenmenology (WR Gibbs, Johnson and Satchler)

Charge exchange $\pi(-) p \rightarrow \Delta \rightarrow \pi(0)$ n cross sections measured

Breitschopf P. Let 639 B 2009

strongly changed in nuclear matter,

Nuclear cross section, absorption, charge exchange D Ashery + , OLD and uncertain

LOCAL DENSITY APPROXIMATION FOR NUCLEAR MOMENTA $K_{FERMI} \sim \rho^{(1/3)}$

GOOD UNDERSTANDING OF SUMS

$\omega(+) + \omega(-)$ and $\lambda(+) + \lambda(-)$ ALLOWS TO FIX ORBITALS OF CAPTURE

TABLE IX. Pb atom. Pion absorption and charge exchange parameters. Calculated and the best fits to the hydrogen chamber experiment.

	$\Lambda(9)$	Fit λ	$\Lambda(8)$
λ^+	0.263	0.42(.03)	0.309
λ^{-}	0.234	0.13(0.03)	0.248
$\lambda^- + \lambda^+$	0.497	0.55 (0.03)	0.55
	$\Omega(9)$	ω	$\Omega(8)$
ω^0		0.230	
ω^+	0.131	0.20(0.01)	0.150
ω^{-}	0.231	0.200(0.01)	0.287
$\omega^+ + \omega^-$	0.362	0.40(0.01)	0.437

Example neutron radius in Pb

Pionisation { W.Bugg }

 $R_{ms}(n) - R_{ms}(p) = 0.20(0.03)$ fm $R_{n/p} = 0.92$

Cold capture { Munich-Warsaw}

 $R_{ms}(n) - R_{ms}(p) = 0.16 \pm (0.02) \pm (0.04)$ fm $R_{n/p} = 1$,

THE SAME HALO , difference due to choce of Rn/p

PROBLEMS BE SOLVED FOR PUMA BY THEORISTS

(1) Why sums of absorption $\omega(+) + \omega(-)$; and charge exchange $\lambda(-) + \lambda(-)$ are understood and each term is not? An additional advantage of PUMA?

(2) Refine the n/p capture ratio R n/p (BARYONIA ?)

(3)
Could we detect α- type structure on surface indicated by experiment in Nitrogen

OTHER PROBLEMS OF RELATED INTEREST

Baryonia, nuclear states of antiprotons

SUBTLE EFFECTS OF NUCLEON MOMENTUM DISTRIBUTION

DO WE KNOW FERMI MOMENTUM AT SURFACE

FERMI MOMENTUM AT NUCLEAR SURFACE ?

Pion charge exchange on short-range correlated (p,n) pairs

A 3 body problem in external field

In the bulk of nuclei

 $\omega(+) + \omega(-)$ and

 $\lambda(+) + \lambda(-)$ effects of p-n corelation cancel out

Individual terms $\lambda(+)$, $\lambda(-) \omega(+)$, $\omega(-)$ change by 20% (an estimate) in the directon of data

CONCLUSION

if PUMA is very precise one may extract changes of (p,n) correlations with increasing neutron numbers

ANTIPROTON - NUCLEON SCATTERING AMPLITUDES IN UNPHYSICAL REGION

NUCLEONS ARE BOUND $E = 2M - \Delta$ Δ from 0 to - 34 MeV

REGION OF QUASI – BOUND STATES

FIG. 1. Quasi-three-body system: (1) antiproton, (2) nucleon, and (3) residual system. Jacobi coordinates: momentum p_3 , k_{12} and space ρ , r.

In atoms Kinetic N-Nbar ENERGY in CM system is negative

E_{CM} = 2 M - Binding - Recoil

 $\overline{N} - N$ quasi- bound states

Absorptive p-bar N scattering lengths a0 and scattering volumes a1

Neutron/proton capture rates is energy (state) dependent

Next week seminar by J.Carbonell

THANK YOU

Initial vector mesons $\rho ==== \Rightarrow \pi \pi$ 1 fm Spherical angle of the nucleus ", seen by pions" does not change much SW. PRevC 54(1996)

TWO EXPERIMENTS DIFFERING BY HYDROGEN CONTAMINATION (BUUG vs WADE) LARGE DIFFERENCE S IN Q = -1,0 channels

(proton and/or hydrogen sectors)

Q	C [4]	fit (*)	C [9],	fit(**)
3	0.09(.1)	0.09	0.2(1)	0.22
+2	1.80(.2)	1.34	2.1(2)	2.2
+1	12.5(.4)	13.2	17.5(5)	16.6
0	43.0(.8)	43.8	38.3(8)	40.4
-1	34.5(.7)	33.7	33.7(7)	31.7
-2	6.5(.5)	7.5	7.8(3)	8.6
-3	1.0(.1)	0.24	0.6(1)	0.50
$< n^{\pm} >$	2.72(3)	2.73	2.79(4)	2.79

FIG. 5. Correlation between halo factor and absolute production yield for $A_t - 1$ nuclei.

FIG. 2. Subthreshold amplitudes generating the $4P_{3/2}$ hyperfine structure component in deuterium. With the Paris 09 solution this amplitude is strongly dominated by the resonant $a({}^{33}P_1)$ amplitude.

Not under full controll

PUMA EXPERYMENT

ANTIPROTONIC ATOMIC EXPERIMENTS

- (1) Measurements of atomic level shifts and widths CERN ERA SINCE 1980
 - → DEEP ~ 100 MeV ATTRACTIVE NUCLEAR POTENTIAL
 - STRONG ~ 100 MeV ABSORBTIVE POTENTIAL never tested inside nuclei nuclear quasi-bound states expected , not found (too broad)
- (2) Detection of residual nuclei CERN Munich – Warsaw collaboration T. v. Egidy , J. Jastrzebski
- ➔ neutron haloes Rms (neutrons) Rms(protons)
- (3) π mesons detected old experiments L. Agnew, W. Bugg ~ 1980)

NEW ERA 2021 PUMA / CERN / A. Obertelli

Collaboration

49 collaborators (39 staffs, 6 postdocs, 4 PhDs) from 13 laboratories, including 42 experimentalists and 7 theorists

T. Aumann, W. Bartmann, A. Bouvard, O. Boine-Frankenheim, A. Broche, F. Butin, D. Calvet, J. Carbonell, P. Chiggiato, H. De Gersem, R. De Oliveira, T. Dobers, F. Ehm, J. Ferreira Somoza, J. Fischer, M. Fraser, E. Friedrich, M. Gomez-Ramos, J.-L. Grenard, G. Hupin, K. Johnston, Y. Kubota, P. Indelicato, R. Lazauskas, S. Malbrunot-Ettenauer, N. Marsic, W. Müller, S. Naimi, N. Nakatsuka, R. Necca, D. Neidherr, G. Neyens, A. Obertelli, Y. Ono, S. Pasinelli, N. Paul, E. C. Pollacco, D. Rossi, H. Scheit, R. Seki, A. Schmidt, L. Schweikhard, S. Sels, E. Siesling, T. Uesaka, M. Wada, F. Wienholtz, S. Wycech, S. Zacarias
PUMA PROJECT

- Transport antiprotons from ELENA to ISOLDE
- Storing 10⁹ antiprotons at ELENA
- Antiproton plasma half-life > 30 days
- □ Introduce low energy (<100 eV) ions at ISOLDE
- Measure charged pions resulting from annihilations
 Charge conservation: neutron-to-proton annihilation ratio

Expected life-cycle of PUMA

- Lifetime: 6 years (20-26)
- 3 expts / year @ ISOLDE
- □ 10¹⁰ antiprotons / year