

LIGHT DARK MATTER SEARCHES

IN LIQUID ARGON TIME PROJECTION CHAMBER

DARKSIDE

Masayuki Wada

AstroCeNT, Warsaw November 20 2023 COPIN-IN2P3 workshop

COPIN

FRENCH-POLAND COLLABORATION

French groups

APC group

Timothee Hessel

Cotutelle

Theo Hugues

Marcin Kuźniak

Masazuki Wada

Azam Zabihi

Marek Walczak

Polish (AstroCeNT) groups

2

Masato Kimura Rafał Wojaczyński

Iftikhar Ahmad

Paul Zakhary

Sarthak Choudhary

Clea Sunny

Group 4

Pascal Pralavorio

Marie Van Uffelen

Group 1

SENSITIVITY TO HIGH AND LOW MASS WIMPS

plot credit: http://resonaances.blogspot.ca

LAr AS A DARK MATTER DETECTION TARGET

GLOBAL ARGON DARK MATTER COLLABORATION

DEAP-3600

More than 400 scientists from past and present argon-based experiments in a single international argon collaboration: **GADMC**

- A sequential, two-steps program:
- DarkSide-20k (200 tonne yr fiducial)

Argo (3,000 tonne yr fiducial)

At SNOLAB ~203X

DarkSide-50

The goal: explore heavy dark matter to the neutrino floor and beyond with extremely low instrumental background

MiniCLEAN

Slovenia 2

Croatia

National Institute

Naple

Pomp

Zadar

Bosnia and Herzegovina

Materao Taranto Lecce

Sarajevo

Mont

3800 m w. e.

Bra In smill

Deep underground location at LNGS, Italy.

DARKSIDE-20K DETECTOR

- DarkSide-20k will be installed underground at the Gran Sasso National laboratories, in Italy.
- > The detector has a nested structure:
 - Titanium Vessel contain liquid underground argon (100 t)
 - Gadolinium loaded acrylic TPC filled with 50 t of UAr
 - Neutron veto buffer between TPC and Ti vessel
 - Membrane cryostat like the ProtoDune one

TPC

WHAT WE HAVE DONE

LOW MASS WIMP SEARCH

Ionization Only Analysis

LOW MASS WIMP SEARCH

- Scintillation signal (S1): threshold at ~2 keV_{ee} / 6 keV_{nr}
- Ionization signal (S2): threshold < 0.1 keV_{ee} / 0.4 keV_{nr} Can go lower threshold!
- Use Ionization (S2) Only.
 - Amplified in the gas region (~23 PE/e⁻ or more)
 - Sensitive to a single extracted electron!
 - The electron yield for nuclear recoils increases at low energy

Events / [0.05 $\mathrm{N_{e^{-}}} imes \mathrm{kg} imes \mathrm{day}$] DS-50 DATA Center PMT Getter Off 10² Getter On Ext. e 10 Ext. e's 1 10^{-1} 10^{-2} 1.5 N_e-0.5 1 2 2.5

 Ar has lighter mass than Xe.
 So, more efficient momentum transfer from low mass DM.

How to calibrate the ionization response?

- First-ever sub-keV calibration in LAr
- Rely on the fit of spectral shapes

For further improvements, need of monochromatic lines and background suppression.

BLEND (Boron–10 Low Energy Neutron Detector)

Low-energy (~100 keV), pulsed, neutron beam!

WHAT WE ACHIEVED IN DS-50

Phys. Rev. D 107, 063001

The most stringent limit at $M_{\chi} = [1.2, 3.6] \text{ GeV/c}^2$

SUB-GEV DARK MATTER AND OTHER DARK MATTER MODELS

- With the same dataset, we search for other dark matter models.
- In those candidates, DM signals are also ER.
- Ultra-light DM (m_χ«1 GeV) scatter off electrons.
- Two extreme cases of Dark Matter form-factor are considered
 - ► F_{DM}=1 heavy mediator
 - ► $F_{DM} \propto 1/q^2$ light mediator
- More for Axion-like particles, Dark photons, and Sterile neutrinos.

Also, results with Migdal effect Phys. Rev. Lett. 130, 101001

DM ANNUAL MODULATION SEARCH

- The Sun moves toward the Cygnus, leading to a boost of the dark matter velocity distribution:
 "Dark Matter Wind"
- The Earth's rotation around the Sun increases the boost around June and decreases around December
 - Event rate in terrestrial detectors above the energy threshold modulates annually

(Figure. from J.Phys.G.Nulc.Part.Phys. 47 094002)

- The DAMA/LIBRA's observation with NaI(TI) crystal
 - Modulation signature above the energy threshold of 0.75 keV
 - Traditional WIMP model faces challenges from the null-detection in many other experiments

DARKSIDE-50 LOW MASS

Consistent to the background-only model

Neither confirm nor reject the DAMA's observation

14

arXiv:2307.07249

DARKSIDE-50 LOW MASS

PERIODOGRAM ANALYSIS

arXiv:2307.07249

- Lomb-Scargle periodogram is applied to look for any periodical signal
 - Residuals of the background-only fit are converted into the frequency space
- No significant signal is observed

DM-ANNUAL MODULATION SEARCH

- Fixed the phase to DM-expectation (event rate takes maximum at June 2nd)
- Simultaneous fit for both time and energy bins (time-dependent background amplitudes are common for all energy bins while the signal amplitude is independent)

WHAT IS OUR PLAN?

- Sensitivity study for low mass dark matter search in the DarkSide-20k detector.
 - Iarger fiducial LAr mass
 - significant self-shielding
 - more radiopure photosensors

Significant sensitivity improvement expected!

- Development of the low-energy neutron detectors.
 - Study response to sub-keV nuclear recoils is crucial to improve our sensitivity for low mass dark matter
 - Necessary to develop efficient neutron detectors at low energy

Measuring NR response at <1 keV_{nr}

At ALTO

LICORNE source: inverted ⁷Li(p,n)⁷Be reaction

- Pulsed (1.5 ns width)
- Monochromatic: <6% (mean~1450 keV rms~85 keV)
- Argon 0.009 n+⁴⁰Ar→n+⁴⁰Ar, E_k(n)=90 keV • Collimated: < 2 degrees 0.008 Correlated 478 keV gammas: ER calibration 0.007 0.006 E₄ [MeV] 0.005 0.004 0.09 $^{1}H_{+}^{7}Li \rightarrow n_{+}^{7}Be, E_{k}(^{1}H) = 1.9 \text{ MeV}$ 0.003 0.08 0.002 0.07 0.001 0 0.06 60 80 100 20 40 120 140 160 180 Access to 0 E₃ [MeV] θ_3 [deg] 0.05 the sub-keV 0.04 0.003 n+¹²⁹Xe→n+¹²⁹Xe, E_k(n)=90 keV range 0.03 Xenon 0.0025 0.02 0.002 0.01 E₄ [MeV] 0.0015 0 20 25 40 0 5 10 15 30 35 45 θ_3 [deg] 0.001 The $p + {^7Li} \rightarrow n + {^7Be}$ reaction at 1.9 MeV, near 0.0005 the reaction threshold, produces ~90 keV 0 20 60 80 100 120 140 160 180 40 0 θ_3 [deg]

18

neutrons

How to detect scattered neutrons in coincidence?

Plastic scintillators are inefficient in this energy range and ³He is not available on the market \Rightarrow **new neutron detector design:**

- high cross section for capturing neutrons on the fly at 100 keV
- No moderation / thermalisation (no Hydrogen!)

Boron-10

- ~2 barns capture cross section at 100 keV
- Quite bad neutron moderator (good!)
- Abundant: 20% ¹⁰B in natural boron
- Enriched ¹⁰B (99.9%) available on the market (~170 euro / g)
- 478 keV gamma follows neutron capture

$${}^{10}\text{B} \rightarrow n \rightarrow \begin{cases} {}^{7}\text{Li} (1015 \text{ keV}) + \alpha (1775 \text{ keV}) & (6.4\%) \\ {}^{7}\text{Li}^* + \alpha (1471 \text{ keV}), {}^{7}\text{Li}^* \rightarrow {}^{7}\text{Li} (839 \text{ keV}) + \gamma (478 \text{ keV}) & (93.6\%) \end{cases}$$

How to detect scattered neutrons in coincidence?

Two available scintillator options

	BaF ₂	BGO
Density [g/cm ³]	4.9	7.13
Effective Atomic	52.2	83
Light Yield [ph/ keV]	1.9 (fast) / 10 (slow)	8-10
Decay time [ns]	1 / 630	300
Hygroscopic	no	No
Potentially, TOF measurement with BaF ₂		

Timeline / Objectives

Goal:

- proof of principle and characterisation of completely new type of neutron detectors
- low energy neutron beam test for the first time at ALTO

Deliverables:

(1) calibrating the efficiency to 478 keV gamma detection using a 137Cs source

- (2) ND efficiencies with beam neutrons
- (3) time-of-flight resolution of the NDs
- (4) angular profile of the neutron beam
- (5) characterisation of beam-induced 478 keV gamma background
- (6) testing lead shielding to protect NDs against gamma background

Preparation:

Six months for assembling the detectors (granted with 10 kEuro by LabEx UnivEarthS):

- Procurements of 2 PMTs, 2x10 g samples of enriched ¹⁰B, DAQ
- Sealed aluminium / steel vial for housing ¹⁰B powder
- BGO and BaF2 crystals already available
 - BGO: assembly + coupling with PMT
 - BaF₂: drilling + coupling with PMT

Requested: 3 days, with two shifts out of three per day (6 UT)

Outlook: if satisfactory results, ALTO low-energy beam + novel neutron detectors attractive for calibrating LAr / LXe dark matter and neutrino detectors

Going to make a test beam experiment at ALTO in this December 11th to 13th!

- French-Polish collaboration led the world leading the low mass dark matter searches with DarkSide-50 experiment.
- Through COPIN, we exchanged group members to improve our collaboration work.
- Development of the low-energy neutron detector is crucial to improve the sensitivity of low mass dark matter searches.
- Exciting test beam experiment at ALTO in this December!

Thank you!