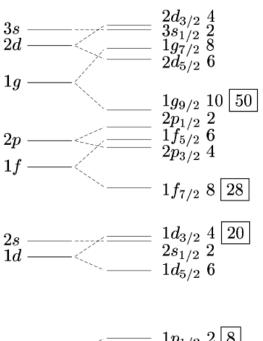

The discovery of excited states in very neutron-deficient ⁶³Ge nucleus

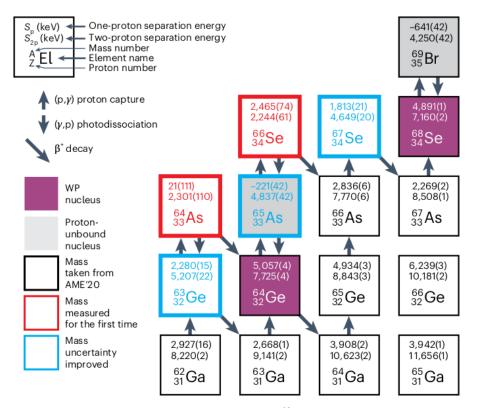
G. Jaworski & A. Fijałkowska

Heavy Ion Laboratory, University of Warsaw, Poland Faculty of Physiscs, University of Warsaw, Poland



⁶³Ge

60Ge > 110 ns	61Ge 44 ms	62Ge 129 ms	63Ge 150 ms	64Ge 63.7 s
ερ ε	ε = 100.00% εp ≈ 62.00%	ε = 100.00% εp	ε = 100.00%	ε = 100.00%
59Ga	60Ga 70 ms	61Ga 167 ms	62Ga 116.121 ms	63Ga 32.4 s
P?	ε = 100.00% εp = 1.60% εα < 0.02%	ε = 100.00% εp < 0.25%	ε = 100.00% εp	ε = 100.00%
58Zn 86 ms	59Zn 182.0 ms	60Zn 2.38 min	61Zn 89.1 s	62Zn 9.186 h
ε = 100.00% εp < 3.00%	ε = 100.00% εp = 0.10%	ε = 100.00%	ε = 100.00%	ε = 100.00%
57Cu 196.3 ms	58Cu 3.204 s	59Cu 81.5 s	60Cu 23.7 min	61Cu 3.339 h
ε = 100.00%	ε = 100.00%	ε = 100.00%	ε = 100.00%	ε = 100.00%
56Ni 6.075 d	57Ni 35.60 h	58Ni STABLE 68.077%	59Ni 7.6E+4 y	60Ni STABLE 26.223%
ε = 100.00%	ε = 100.00%		ε = 100.00%	



⁶³Ge and the rp-process

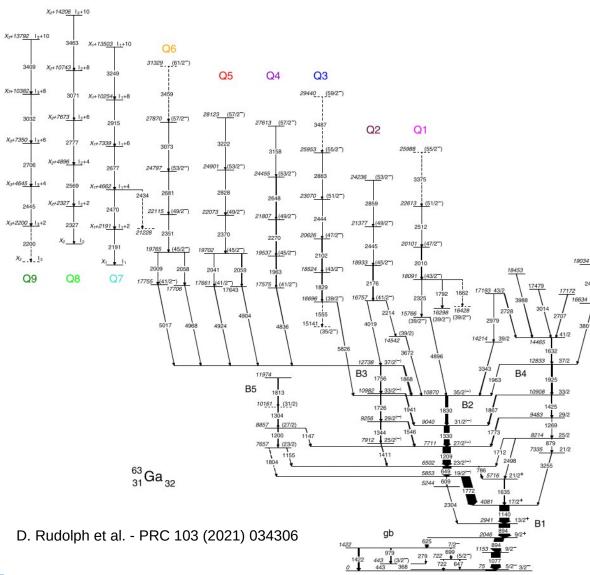
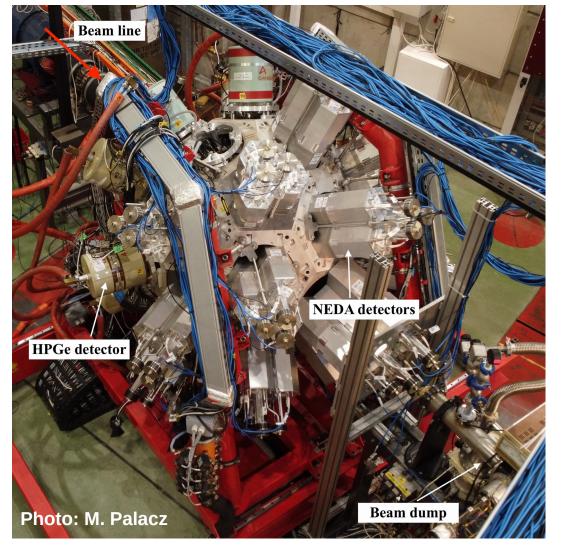


Fig. 1 | **Nuclear chart around the rp process WP**⁶⁴**Ge.** The nuclides are organized according to neutron (horizontally) and proton (vertically) numbers. Nuclides whose masses were taken from the latest AME'20 database³⁶, whose masses were experimentally determined or whose mass uncertainties were improved in this work are indicated in black, red and blue colours, respectively. The one-proton (S_p) and two-proton (S_{2p}) separation energies (values expressed in keV) follow the same colour code. The pathway of the rp process nucleosynthesis is shown with the black arrows. The legend provides more details.

X. Zhou et al. - Nature Physics 19 (2023) 1091

⁶³Ga – mirror nuclei of ⁶³Ge


⁶³Ge – the aims of the experiment

Observation of excited states in ⁶³Ge allowing to reckon:

- \rightarrow proton and neutron spe,
- \rightarrow core excitations,
- \rightarrow ⁶³Ga isospin symmetry within the states of 2p3/2, 1f5/2, 2p1/2 shells,
- → ? collective octupole effects due to p3/2-g9/2 correlations observed in ⁶⁵Ge,
- \rightarrow possibly astro-physical significance.

Setup

peedle. 5

EAGLE:

 $\epsilon(\gamma) = 1.4\% @ 1.3 \text{ MeV}$

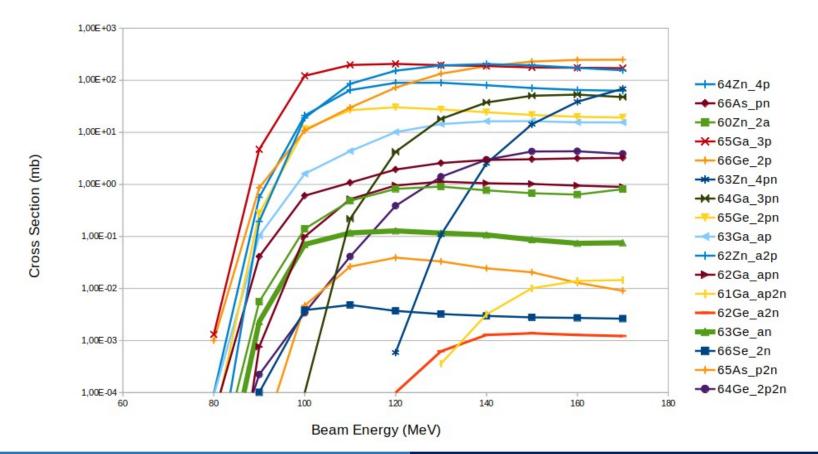
DIAMANT:

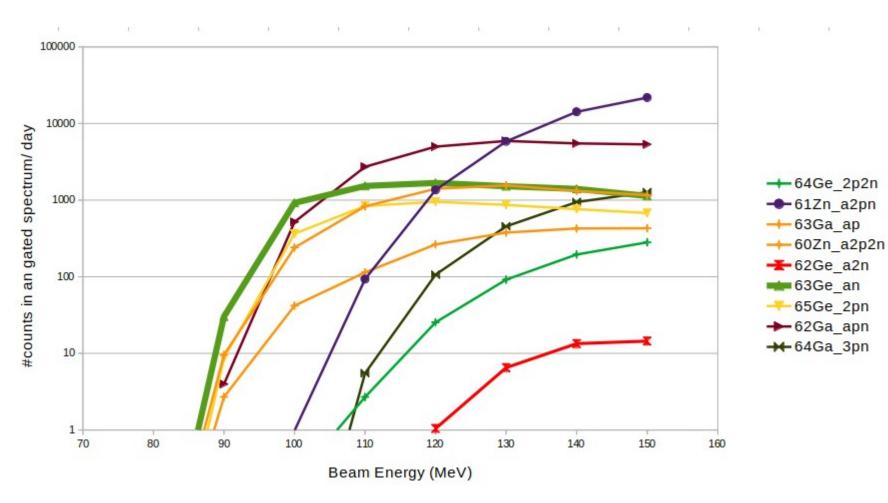
 $\epsilon(p) = 60\%$ $\epsilon(\alpha) = 40\%$

NEDA:

 $\epsilon(n) = 30\%$

6xCaen V1725S(B) – xdaq 5xNumexo – Narval


Reactions and x-secs


 ${}^{40}Ca + {}^{28}Si \rightarrow {}^{78}Se \rightarrow {}^{63}Ge + \alpha n$ (${}^{40}Ca @ 105 MeV$)

⁶³Ge x-sec: ~0.1 mb (HIVAP)

 36 Ar + 32 S → 78 Se → 63 Ge + α n (issue: ~60 k€ cost for 36 Ar bottles)

Needi selectivity & beam-time

reedle. 5

Expected data collection:

* α n-gated g.s. γ /day: 1000

We ask for 15 days of the beam on the target to collect:

* α n-gated γ - γ : 150 counts

Summary

We aim to obtain for the first time the information on excited states in the ⁶³Ge nucleus.

And thus:

- \rightarrow explore single-particle states in the upper *fp* shell region,
- \rightarrow investigate levels associated with the collective excitation of the N=Z=28 core,
- \rightarrow acquire experimental data on the isospin symmetry breaking in the upper *fp* shell region.

We ask for 15 days of beam on the target.

Collaboration

The discovery of excited states in very neutron-deficient ⁶³Ge nucleus

G. Jaworski¹, A. Fijałkowska², E. Ahlgren Cederlöf³, M. Araszkiewicz², A. Astier⁴,
T. Bäck³, M. Ciemała⁵, N. Cieplicka-Oryńczak⁵, G. Colucci¹, A. Courbe⁴, J. Darai⁶,
Y. Fang⁷, F. Galtarossa⁸, A. Goasduff⁹, J. Grębosz⁵, V. Guadilla², S. Guo⁷,
K. Hadyńska-Klęk¹, C. Hiver⁴, Y. Hrabar¹⁰, P. Jodidar⁴, M. Kisieliński¹, M. Kmiecik⁵,
M. Komorowska¹, A. Korgul², M. Kowalczyk¹, A. Krakó⁶, B. Kruzsicz⁶, I. Kuti⁶,
B.F. Lv⁷, A. Maj⁵, A. Malinowski¹, M. Matejska-Minda⁵, N. Marchini¹¹, D. Mengoni⁸,
K. Miernik², J. Molnár⁶, A. Nałęcz-Jawecki¹², A. Nannini¹¹, J. Nyberg¹³, M. Palacz¹,
G. Pasqualato⁴, C. Petrache⁴, I. Piętka¹, W. Poklepa¹⁴, J. Samorajczyk-Pyśk¹,
M. Rocchini¹¹, P. Sekrecka¹, D. Sohler⁶, K. Solak², M. Stepaniuk², K. Szlęzak²,
A. Špaček¹, J. Timár⁶, N. Toniolo⁹, A. Tucholski¹, K. Wrzosek-Lipska¹, F. Wu¹⁵,

¹ Heavy Ion Laboratory, University of Warsaw, Poland

² Faculty of Physics, University of Warsaw, Poland

³ Department of Physics, Royal Institute of Technology (KTH), Stockholm, Sweden

⁴ IJClab, Université Paris-Saclay, CNRS-IN2P3, Orsay, France

⁵ Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

⁶ HUN-REN Institute for Nuclear Research (ATOMKI), Debrecen, Hungary

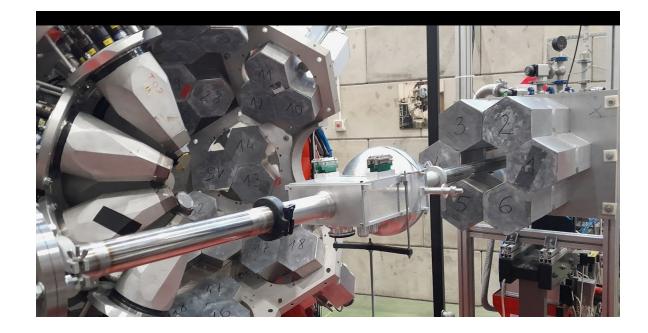
⁷ Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China

⁸ Faculty of Physics, University of Padova & INFN Sec. Padova, Italy

⁹ LNL INFN, Legnaro, Italy

¹⁰ Lund University, Sweden

¹¹ INFN Sec. Firenze, Italy


¹² National Centre for Nuclear Research, Warsaw, Poland

¹³ Department of Physics and Astronomy, Uppsala University, Sweden

¹⁴ GSI Helmoltzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

¹⁵ Simon Fraser University, Burnaby, Canada

Thank you for your attention

